1887

Abstract

Information about the symbionts of legumes of the Caesalpinioideae subfamily is still limited, and we performed a polyphasic approach with three strains—CNPSo 3448, CNPSo 3394 and CNPSo 3442—isolated from , a native legume broadly distributed in the USA. In the phylogenetic analysis of both the 16S rRNA gene and the intergenic transcribed spacer, the CNPSo strains were clustered within the superclade. Multilocus sequence analysis with six housekeeping genes—, , , , and —indicated that is the closest species, with 83 % of nucleotide identity. In the genome analyses of CNPSo 3448, average nucleotide identity and digital DNA–DNA hybridization results confirmed higher similarity with , with values estimated of 93.35 and 51.50 %, respectively, both below the threshold of the same species, confirming that the CNPSo strains represent a new lineage. BOX-PCR profiles indicated high intraspecific genetic diversity between the CNPSo strains. In the analyses of the symbiotic genes and the CNPSo strains were clustered with , , , and , indicating a different phylogenetic history compared to the conserved core genes. Other physiological (C utilization, tolerance to antibiotics and abiotic stresses), chemical (fatty acid profile) and symbiotic (nodulation host range) properties were evaluated and are described. The data from our study support the description of the CNPSo strains as the novel species sp. nov., with CNPSo 3448 (=USDA 10051=U687=CL 40) designated as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003640
2019-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/11/3448.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003640&mimeType=html&fmt=ahah

References

  1. Ormeño-Orrillo E, Hungria M, Martinez-Romero E. Dinitrogen-fixing prokaryotes. In Rosenberg E, DeLong E, Stackebrandt E, Lory S, Thompson F et al. (editors) The Prokaryotes: Prokaryotic physiology and biochemistry, 4th ed. Springer-Verlag Berlin Heidelberg; 2013 pp. 427–451
    [Google Scholar]
  2. Peix A, Ramírez-Bahena MH, Velázquez E, Bedmar EJ. Bacterial associations with legumes. CRC Crit Rev Plant Sci 2015; 34:17–42 [View Article]
    [Google Scholar]
  3. Schultze M, Kondorosi A. Regulation of symbiotic root nodule development. Annu Rev Genet 1998; 32:33–57 [View Article][PubMed]
    [Google Scholar]
  4. Velazquez E, R. Silva L, Peix A. Legumes: a healthy and ecological source of flavonoids. Curr Nutr Food Sci 2010; 6:109–144 [View Article]
    [Google Scholar]
  5. LPWG A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny. Taxon 2017; 66:44–77
    [Google Scholar]
  6. Faria SM, Franco AA, Jesus RM, Menandro Mdes, Baitello JB et al. New nodulating legume trees from south-east Brazil. New Phytol 1984; 98:317–328 [View Article]
    [Google Scholar]
  7. Diabate M, Munive A, de Faria SM, Ba A, Dreyfus B et al. Occurrence of nodulation in unexplored leguminous trees native to the West African tropical rainforest and inoculation response of native species useful in reforestation. New Phytol 2005; 166:231–239 [View Article][PubMed]
    [Google Scholar]
  8. Sprent JI, Ardley J, James EK. Biogeography of nodulated legumes and their nitrogen-fixing symbionts. New Phytol 2017; 215:40–56 [View Article][PubMed]
    [Google Scholar]
  9. Irwin HS, Barneby RC. Notes on the generic status of Chamaecrista Moench (Leguminosae: Caesalpinioideae). Brittonia 1976; 28:28–36 [View Article]
    [Google Scholar]
  10. Rando JG, Zuntini AR, Conceição A, van den Berg C, Pirani JR et al. Phylogeny of Chamaecrista ser. Coriaceae (Leguminosae) unveils a lineage recently diversified in brazilian campo rupestre vegetation. Int J Plant Sci 2015; 177:
    [Google Scholar]
  11. Sprent JI, Ardley JK, James EK. South African Journal of Botany From North to South: A latitudinal look at legume nodulation processes. South African J Bot. South African Association of Botanists 2013; 89:31–41
    [Google Scholar]
  12. Naisbitt T, James EK, Sprent JI. The evolutionary significance of the legume genus Chamaecrista, as determined by nodule structure. New Phytol 1992; 122:487–492 [View Article]
    [Google Scholar]
  13. Doyle JJ. Phylogenetic perspectives on the origins of nodulation. Mol Plant Microbe Interact 2011; 24:1289–1295 [View Article][PubMed]
    [Google Scholar]
  14. Moulin L, Béna G, Boivin-Masson C, Stepkowski T. Phylogenetic analyses of symbiotic nodulation genes support vertical and lateral gene co-transfer within the Bradyrhizobium genus. Mol Phylogenet Evol 2004; 30:720–732 [View Article][PubMed]
    [Google Scholar]
  15. Parker MA, Kennedy DA. Diversity and relationships of bradyrhizobia from legumes native to eastern North America. Can J Microbiol 2006; 52:1148–1157 [View Article][PubMed]
    [Google Scholar]
  16. Lafay B, Burdon JJ. Molecular diversity of legume root-nodule bacteria in Kakadu National Park, Northern Territory, Australia. PLoS One 2007; 2:e2775 [View Article][PubMed]
    [Google Scholar]
  17. Santos JM, Casaes Alves PA, Silva VC, Kruschewsky Rhem MF, James EK et al. Diverse genotypes of Bradyrhizobium nodulate herbaceous Chamaecrista (Moench) (Fabaceae, Caesalpinioideae) species in Brazil. Syst Appl Microbiol 2017; 40:69–79 [View Article][PubMed]
    [Google Scholar]
  18. Rathi S, Tak N, Bissa G, Chouhan B, Ojha A et al. Selection of Bradyrhizobium or Ensifer symbionts by the native Indian caesalpinioid legume Chamaecrista pumila depends on soil pH and other edaphic and climatic factors. FEMS Microbiol Ecol 2018; 94:1–17 [View Article]
    [Google Scholar]
  19. Bünger W, Grönemeyer JL, Sarkar A, Reinhold-Hurek B. Bradyrhizobium ripae sp. nov., a nitrogen-fixing symbiont isolated from nodules of wild legumes in Namibia. Int J Syst Evol Microbiol 2018; 68:3688–3695 [View Article][PubMed]
    [Google Scholar]
  20. Morris JB. Showy partridge pea [Chamaecrista fasciculata (Michx.) Greene] with potential for cultivation as a multi-functional species in the United States. Genet Resour Crop Evol 2012; 59:1577–1581 [View Article]
    [Google Scholar]
  21. Hungria M, O’Hara GW, Zilli JE, Araujo RS, Deaker R et al. Isolation and growth of rhizobia. In Howieson JG, Dilworth MJ. (editors) Working with Rhizobia Canberra: Australian Centre for International Agriculture Reserch (ACIAR); 2016 pp. 39–60
    [Google Scholar]
  22. Somasegaran P, Hoben HJ. Handbook for Rhizobia New York: Springer Verlag; 1994 ISBN 978-1-4613-8377-2
    [Google Scholar]
  23. Delamuta JR, Ribeiro RA, Araújo JL, Rouws LF, Zilli et al. Bradyrhizobium stylosanthis sp. nov., comprising nitrogen-fixing symbionts isolated from nodules of the tropical forage legume Stylosanthes spp. Int J Syst Evol Microbiol 2016; 66:3078–3087 [View Article][PubMed]
    [Google Scholar]
  24. Delamuta JRM, Menna P, Ribeiro RA, Hungria M. Phylogenies of symbiotic genes of Bradyrhizobium symbionts of legumes of economic and environmental importance in Brazil support the definition of the new symbiovars pachyrhizi and sojae. Syst Appl Microbiol 2017; 40:254–265 [View Article][PubMed]
    [Google Scholar]
  25. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  26. Gouy M, Guindon S, Gascuel O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 2010; 27:221–224 [View Article][PubMed]
    [Google Scholar]
  27. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  28. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  29. Hall T. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  30. Menna P, Barcellos FG, Hungria M. Phylogeny and taxonomy of a diverse collection of Bradyrhizobium strains based on multilocus sequence analysis of the 16S rRNA gene, ITS region and glnII, recA, atpD and dnaK genes. Int J Syst Evol Microbiol 2009; 59:2934–2950 [View Article][PubMed]
    [Google Scholar]
  31. Delamuta JR, Ribeiro RA, Ormeño-Orrillo E, Melo IS, Martínez-Romero E et al. Polyphasic evidence supporting the reclassification of Bradyrhizobium japonicum group Ia strains as Bradyrhizobium diazoefficiens sp. nov. Int J Syst Evol Microbiol 2013; 63:3342–3351 [View Article][PubMed]
    [Google Scholar]
  32. Helene LC, Delamuta JR, Ribeiro RA, Ormeño-Orrillo E, Rogel MA et al. Bradyrhizobium viridifuturi sp. nov., encompassing nitrogen-fixing symbionts of legumes used for green manure and environmental services. Int J Syst Evol Microbiol 2015; 65:4441–4448 [View Article][PubMed]
    [Google Scholar]
  33. Delamuta JR, Ribeiro RA, Ormeño-Orrillo E, Parma MM, Melo IS et al. Bradyrhizobium tropiciagri sp. nov. and Bradyrhizobium embrapense sp. nov., nitrogen-fixing symbionts of tropical forage legumes. Int J Syst Evol Microbiol 2015; 65:4424–4433 [View Article][PubMed]
    [Google Scholar]
  34. Helene LCF, Delamuta JRM, Ribeiro RA, Hungria M. Bradyrhizobium mercantei sp. nov., a nitrogen-fixing symbiont isolated from nodules of Deguelia costata (syn. Lonchocarpus costatus). Int J Syst Evol Microbiol 2017; 67:1827–1834 [View Article][PubMed]
    [Google Scholar]
  35. Willems A, Munive A, de Lajudie P, Gillis M. In most Bradyrhizobium groups sequence comparison of 16S-23S rDNA internal transcribed spacer regions corroborates DNA-DNA hybridizations. Syst Appl Microbiol 2003; 26:203–210 [View Article][PubMed]
    [Google Scholar]
  36. Islam MS, Kawasaki H, Muramatsu Y, Nakagawa Y, Seki T. Bradyrhizobium iriomotense sp. nov., isolated from a tumor-like root of the legume Entada koshunensis from Iriomote Island in Japan. Biosci Biotechnol Biochem 2008; 72:1416–1429 [View Article][PubMed]
    [Google Scholar]
  37. Wang JY, Wang R, Zhang YM, Liu HC, Chen WF et al. Bradyrhizobium daqingense sp. nov., isolated from soybean nodules. Int J Syst Evol Microbiol 2013; 63:616–624 [View Article][PubMed]
    [Google Scholar]
  38. Zhang YM, Li Y, Chen WF, Wang ET, Sui XH et al. Bradyrhizobium huanghuaihaiense sp. nov., an effective symbiotic bacterium isolated from soybean (Glycine max L.) nodules. Int J Syst Evol Microbiol 2012; 62:1951–1957 [View Article][PubMed]
    [Google Scholar]
  39. Lasse Grönemeyer J, Reinhold-Hurek B, Hurek T. Bradyrhizobium kavangense sp. nov., a symbiotic nitrogen-fixing bacterium from root nodules of traditional Namibian pulses. Int J Syst Evol Microbiol 2015; 65:4886–4894 [View Article]
    [Google Scholar]
  40. Grönemeyer JL, Hurek T, Bünger W, Reinhold-Hurek B. Bradyrhizobium vignae sp. nov., a nitrogen-fixing symbiont isolated from effective nodules of Vigna and Arachis . Int J Syst Evol Microbiol 2016; 66:62–69 [View Article][PubMed]
    [Google Scholar]
  41. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  42. Glaeser SP, Kämpfer P. Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol 2015; 38:237–245 [View Article][PubMed]
    [Google Scholar]
  43. Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T et al. Opinion: Re-evaluating prokaryotic species. Nat Rev Microbiol 2005; 3:733–739 [View Article][PubMed]
    [Google Scholar]
  44. Durán D, Rey L, Mayo J, Zúñiga-Dávila D, Imperial J et al. Bradyrhizobium paxllaeri sp. nov. and Bradyrhizobium icense sp. nov., nitrogen-fixing rhizobial symbionts of Lima bean (Phaseolus lunatus L.) in Peru. Int J Syst Evol Microbiol 2014; 64:2072–2078 [View Article][PubMed]
    [Google Scholar]
  45. Velázquez E, García-Fraile P, Ramírez-Bahena MH, Rivas R, Martínez-Molina E et al. Current status of the taxonomy of bacteria able to establish nitrogen-fixing legume symbiosis. In Zaidi A, Khan MS, Musarrat J. (editors) Microbes for Legume Improvement, 2nd ed. Cham: Springer; 2017 pp. 1–43 p.
    [Google Scholar]
  46. Menna P, Hungria M. Phylogeny of nodulation and nitrogen-fixation genes in Bradyrhizobium: supporting evidence for the theory of monophyletic origin, and spread and maintenance by both horizontal and vertical transfer. Int J Syst Evol Microbiol 2011; 61:3052–3067 [View Article][PubMed]
    [Google Scholar]
  47. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013; 29:1072–1075 [View Article][PubMed]
    [Google Scholar]
  48. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42:D206–D214 [View Article][PubMed]
    [Google Scholar]
  49. Rosselló-Móra R, Amann R. Past and future species definitions for bacteria and Archaea . Syst Appl Microbiol 2015; 38:209–216 [View Article][PubMed]
    [Google Scholar]
  50. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  51. Mahato NK, Gupta V, Singh P, Kumari R, Verma H et al. Microbial taxonomy in the era of OMICS: application of DNA sequences, computational tools and techniques. Antonie van Leeuwenhoek 2017; 110:1357–1371 [View Article][PubMed]
    [Google Scholar]
  52. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  53. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. Peer J Prepr 2016:e1900v1
    [Google Scholar]
  54. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60–14 [View Article][PubMed]
    [Google Scholar]
  55. Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T et al. Complete genomic sequence of nitrogen-fixing symbiotic bacterium Bradyrhizobium japonicum USDA110. DNA Res 2002; 9:189–197 [View Article][PubMed]
    [Google Scholar]
  56. Kaneko T, Maita H, Hirakawa H, Uchiike N, Minamisawa K et al. Complete genome sequence of the soybean symbiont Bradyrhizobium japonicum strain USDA6T. Genes 2011; 2:763–787 [View Article][PubMed]
    [Google Scholar]
  57. Rivas R, Willems A, Palomo JL, García-Benavides P, Mateos PF et al. Bradyrhizobium betae sp. nov., isolated from roots of Beta vulgaris affected by tumour-like deformations. Int J Syst Evol Microbiol 2004; 54:1271–1275 [View Article][PubMed]
    [Google Scholar]
  58. Versalovic J, Schneider M, de BFJ, Lupski JR. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 1994; 5:25–40
    [Google Scholar]
  59. Kaschuk G, Hungria M, Andrade DS, Campo RJ. Genetic diversity of rhizobia associated with common bean (Phaseolus vulgaris L.) grown under no-tillage and conventional systems in Southern Brazil. Applied Soil Ecology 2006; 32:210–220 [View Article]
    [Google Scholar]
  60. Sneath P, Sokal R. Numerical Taxonomy: The Principles and Practice of Numerical Classification San Francisco: Freeman; 1973 pp. 573
    [Google Scholar]
  61. Jaccard P. The distribution of the flora in the alpine zone.1. New Phytol 1912; 11:37–50 [View Article]
    [Google Scholar]
  62. Hungria M, Chueire Lı́gia Maria de O, Coca RG, Megı́as M. Preliminary characterization of fast growing rhizobial strains isolated from soyabean nodules in Brazil. Soil Biology and Biochemistry 2001; 33:1349–1361 [View Article]
    [Google Scholar]
  63. MIDI Sherlock Microbial Identification System Operating Manual, version 4.0 Newark: MIDI, Inc; 2001
    [Google Scholar]
  64. Tighe SW, de Lajudie P, Dipietro K, Lindström K, Nick G et al. Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the sherlock microbial identification system. Int J Syst Evol Microbiol 2000; 50 Pt 2:787–801 [View Article][PubMed]
    [Google Scholar]
  65. Wang R, Chang YL, Zheng WT, Zhang D, Zhang XX et al. Bradyrhizobium arachidis sp. nov., isolated from effective nodules of Arachis hypogaea grown in China. Syst Appl Microbiol 2013; 36:101–105 [View Article][PubMed]
    [Google Scholar]
  66. Jordan DC. Transfer of Rhizobium japonicum Buchananm 1980 to Bradyrhizobium japonicum gen. Nov., a genus of slow growing root nodule bateria. Int J Syst Bacteriol 1982; 32:378–380
    [Google Scholar]
  67. Aserse AA, Woyke T, Kyrpides NC, Whitman WB, Lindström K. Draft genome sequences of Bradyrhizobium shewense sp. nov. ERR11T and Bradyrhizobium yuanmingense CCBAU 10071T . Stand Genomic Sci 2017; 12:1–14 [View Article][PubMed]
    [Google Scholar]
  68. Yu X, Cloutier S, Tambong JT, Bromfield ES. Bradyrhizobium ottawaense sp. nov., a symbiotic nitrogen fixing bacterium from root nodules of soybeans in Canada. Int J Syst Evol Microbiol 2014; 64:3202–3207 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003640
Loading
/content/journal/ijsem/10.1099/ijsem.0.003640
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error