1887

Abstract

A Gram-stain-negative, non-motile, aerobic, short rod-shaped bacterium, designated OD32, was isolated from a soil sample taken from the rhizosphere of collected from the Arctic tundra. The novel strain, OD32, was able to grow at 15–37 °C (optimum, 33 °C), pH 6.5–9.5 (pH 7.5–8.0) and 0–0.5 % NaCl (0 %, w/v). A phylogenetic analysis based on 16S rRNA gene sequences revealed that strain OD32 was most closely related to the genus ; it shared the highest sequence similarity (95.7 %) with ATCC 43672. Genomic DNA G+C content of the strain OD32 was 68.2 mol%. The predominant respiratory quinone was menaquinone 8 (MK-8). The major fatty acids were summed feature 3 (C 7/C 6), C 6, C 6, C, C and iso-C. Based on phylogenetic inference and genotypic characteristics, strain OD32 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is OD32 (=KCTC 33972=CICC 24671).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003636
2019-08-06
2019-10-20
Loading full text...

Full text loading...

References

  1. Brooks BW, Murray RGE. Nomenclature for "Micrococcus radiodurans" and other radiation-resistant cocci: Deinococcaceae fam. nov. and Deinococcus gen. nov., including five species. Int J Syst Bacteriol 1981;31:353–360 [CrossRef]
    [Google Scholar]
  2. Hussain F, Khan IU, Habib N, Xian WD, Hozzein WN et al. Deinococcus saudiensis sp. nov., isolated from desert. Int J Syst Evol Microbiol 2016;66:5106–5111 [CrossRef][PubMed]
    [Google Scholar]
  3. Moya G, Yan ZF, Chu DH, Won K, Yang JE et al. Deinococcus hibisci sp. nov., isolated from rhizosphere of Hibiscus syriacus L. (mugunghwa flower). Int J Syst Evol Microbiol 2018;68:28–34 [CrossRef][PubMed]
    [Google Scholar]
  4. Srinivasan S, Kim MK, Lim S, Joe M, Lee M et al. Deinococcus daejeonensis sp. nov., isolated from sludge in a sewage disposal plant. Int J Syst Evol Microbiol 2012;62:1265–1270 [CrossRef][PubMed]
    [Google Scholar]
  5. Hirsch P, Gallikowski CA, Siebert J, Peissl K, Kroppenstedt R et al. Deinococcus frigens sp. nov., Deinococcus saxicola sp. nov., and Deinococcus marmoris sp. nov., low temperature and draught-tolerating, UV-resistant bacteria from continental Antarctica. Syst Appl Microbiol 2004;27:636–645 [CrossRef][PubMed]
    [Google Scholar]
  6. Kim EB, Kang MS, Joo ES, Jeon SH, Jeong SW et al. Deinococcus ruber sp. nov., a radiation-resistant bacterium isolated from soil. Int J Syst Evol Microbiol 2017;67:72–76 [CrossRef][PubMed]
    [Google Scholar]
  7. Lee JJ, Lee YH, Park SJ, Lim S, Jeong SW et al. Deinococcus seoulensis sp. nov., a bacterium isolated from sediment at Han River in Seoul, Republic of Korea. J Microbiol 2016;54:537–542 [CrossRef][PubMed]
    [Google Scholar]
  8. Lee JJ, Lee YH, Park SJ, Lim S, Jeong SW et al. Deinococcus sedimenti sp. nov. isolated from river sediment. J Microbiol 2016;54:802–808 [CrossRef][PubMed]
    [Google Scholar]
  9. Li J, Kudo C, Tonouchi A. Description of Deinococcus populi sp. nov. from the trunk surface of a Japanese aspen tree. Arch Microbiol 2018;200:291–297 [CrossRef][PubMed]
    [Google Scholar]
  10. Makk J, Tóth EM, Anda D, Pál S, Schumann P et al. Deinococcus budaensis sp. nov., a mesophilic species isolated from a biofilm sample of a hydrothermal spring cave. Int J Syst Evol Microbiol 2016;66:5345–5351 [CrossRef][PubMed]
    [Google Scholar]
  11. Lim S, Jung JH, Blanchard L, de Groot A. Conservation and diversity of radiation and oxidative stress resistance mechanisms in Deinococcus species. FEMS Microbiol Rev 2019;43:19–52 [CrossRef][PubMed]
    [Google Scholar]
  12. Daly MJ. Death by protein damage in irradiated cells. DNA Repair 2012;11:12–21 [CrossRef][PubMed]
    [Google Scholar]
  13. Slade D, Radman M. Oxidative stress resistance in Deinococcus radiodurans. Microbiol Mol Biol Rev 2011;75:133–191 [CrossRef][PubMed]
    [Google Scholar]
  14. Narumi I, Satoh K, Cui S, Funayama T, Kitayama S et al. PprA: a novel protein from Deinococcus radiodurans that stimulates DNA ligation. Mol Microbiol 2004;54:278–285 [CrossRef][PubMed]
    [Google Scholar]
  15. Rajpurohit YS, Misra HS. Characterization of a DNA damage-inducible membrane protein kinase from Deinococcus radiodurans and its role in bacterial radioresistance and DNA strand break repair. Mol Microbiol 2010;77:1470–1482 [CrossRef][PubMed]
    [Google Scholar]
  16. Liu QQ, Wang Y, Li J, Du ZJ, Chen GJ. Saccharicrinis carchari sp. nov., isolated from a shark, and emended descriptions of the genus Saccharicrinis and Saccharicrinis fermentans. Int J Syst Evol Microbiol 2014;64:2204–2209 [CrossRef][PubMed]
    [Google Scholar]
  17. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  18. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  19. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  20. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  21. Callegan RP, Nobre MF, Mcternan PM, Battista JR, Navarro-González R et al. Description of four novel psychrophilic, ionizing radiation-sensitive Deinococcus species from alpine environments. Int J Syst Evol Microbiol 2008;58:1252–1258 [CrossRef][PubMed]
    [Google Scholar]
  22. Xia J, Ling SK, Wang XQ, Chen GJ, Du ZJ. Aliifodinibius halophilus sp. nov., a moderately halophilic member of the genus Aliifodinibius, and proposal of Balneolaceae fam. nov. Int J Syst Evol Microbiol 2016;66:2225–2233 [CrossRef][PubMed]
    [Google Scholar]
  23. Smibert JF, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Wood WA, Krieg NR et al. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.607–654
    [Google Scholar]
  24. Dong XZ CM. Determination of biochemical characteristics. In Dong XZ, Cai MY. (editors) Manual for the Systematic Identification of General Bacteria Beijing: Science Press; 2001; pp.370–398
    [Google Scholar]
  25. Han JR, Geng QL, Wang FQ, Du ZJ, Chen GJ. Algoriphagus marinus sp. nov., isolated from marine sediment and emended description of the genus Algoriphagus. Int J Syst Evol Microbiol 2017;67:2412–2417 [CrossRef][PubMed]
    [Google Scholar]
  26. Kroppenstedt RM. Separation of Bacterial Menaquinones by HPLC Using Reverse Phase (RP18) and a Silver Loaded Ion Exchanger as Stationary Phases. J Liq Chromatogr 1982;5:2359–2367 [CrossRef]
    [Google Scholar]
  27. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. Tech Note 1990;101:1–6
    [Google Scholar]
  28. Kamekura M, Kates M. Lipids of halophilic archaebacteria. In Rodriguez-Valera F, Raton Boca. (editors) Halophilic Bacteria FL: CRC Press; 1988; pp.25–54
    [Google Scholar]
  29. Wang NN, Liu ZY, Jiang LX, Li YX, Du ZJ et al. Roseovarius salinarum sp. nov., isolated from a marine solar saltern. Int J Syst Evol Microbiol 2018;68:1986–1991 [CrossRef][PubMed]
    [Google Scholar]
  30. Counsell TJ, Murray RGE. Polar lipid profiles of the genus deinococcus. Int J Syst Bacteriol 1986;36:202–206 [CrossRef]
    [Google Scholar]
  31. Cha S, Srinivasan S, Seo T, Kim MK. Deinococcus soli sp. nov., a gamma-radiation-resistant bacterium isolated from rice field soil. Curr Microbiol 2014;68:777–783 [CrossRef][PubMed]
    [Google Scholar]
  32. Im WT, Jung HM, Ten LN, Kim MK, Bora N et al. Deinococcus aquaticus sp. nov., isolated from fresh water, and Deinococcus caeni sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2008;58:2348–2353 [CrossRef][PubMed]
    [Google Scholar]
  33. Rainey FA, Nobre MF, Schumann P, Stackebrandt E, da Costa MS. Phylogenetic diversity of the deinococci as determined by 16S ribosomal DNA sequence comparison. Int J Syst Bacteriol 1997;47:510–514 [CrossRef][PubMed]
    [Google Scholar]
  34. Oyaizu H, Stackebrandt E, Schleifer KH, Ludwig W, Pohla H et al. A Radiation-Resistant Rod-Shaped Bacterium, Deinobacter grandis gen. nov., sp. nov., with peptidoglycan containing ornithine. Int J Syst Bacteriol 1987;37:62–67 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003636
Loading
/content/journal/ijsem/10.1099/ijsem.0.003636
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error