1887

Abstract

A novel Gram-stain-negative, aerobic, non-motile and rod-shaped bacterium was isolated from Lake Dajiaco on the Tibetan Plateau. Strain DJC grew without NaCl and tolerated up to 3 % (w/v) NaCl. Growth occurred at pH 6.0–10.0 (optimum, pH 7.0–8.0) and 15–37 °C (optimum, 25–30 °C). Vitamins were not required for growth. The main polar lipids of strain DJC were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The predominant respiratory quinone was Q-10. The major fatty acid was Cω7. Genome sequencing revealed a genome size of 4.61 Mbp and a G+C content of 62.9 mol%. Analysis of 16S rRNA sequences showed that strain DJC belonged to the genus , with the closest neighbour RCRI19 (97.5 %). DNA–DNA relatedness between strain DJC and the closest phylogenetically related strain RCRI19 was 40.8 %. Stain DJC was clearly distinguished from the type strain mentioned above through phylogenetic analysis, DNA–DNA hybridization, fatty acid composition data and a range of physiological and biochemical characteristic comparisons. Based on its phenotypic and chemotaxonomic characteristics, strain DJC could be classified as a representative of a novel species of the genus for which the name sp. nov. is proposed. The type strain is DJC (=CICC 24242=KCTC 62173).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003635
2019-08-06
2019-10-15
Loading full text...

Full text loading...

References

  1. Garrity GM, Bell JA, Lilburn T, Family I. Rhodobacteraceae fam. nov., Bergey’s manual of systematic bacteriology. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) The Proteobacteria, Part C The Alpha-, Beta-, Delta-, and Epsilonproteobacteria, 2nd ed.vol. 2 New York: Springer; 2005; pp.161–167
    [Google Scholar]
  2. Parte AC. LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014;42:D613–D616 [CrossRef][PubMed]
    [Google Scholar]
  3. Imhoff JF, Truper HG, Pfennig N. Rearrangement of the species and genera of the phototrophic "Purple Nonsulfur Bacteria". Int J Syst Bacteriol 1984;34:340–343 [CrossRef]
    [Google Scholar]
  4. Nupur, Vaidya B, Tanuku NR, Pinnaka AK. Albirhodobacter marinus gen. nov., sp. nov., a member of the family Rhodobacteraceae isolated from sea shore water of Visakhapatnam, India. Antonie van Leeuwenhoek 2013;103:347–355 [CrossRef][PubMed]
    [Google Scholar]
  5. Foesel BU, Drake HL, Schramm A. Defluviimonas denitrificans gen. nov., sp. nov., and Pararhodobacter aggregans gen. nov., sp. nov., non-phototrophic Rhodobacteraceae from the biofilter of a marine aquaculture. Syst Appl Microbiol 2011;34:498–502 [CrossRef][PubMed]
    [Google Scholar]
  6. Subhash Y, Tushar L, Sasikala C, Ramana C. Falsirhodobacter halotolerans gen. nov., sp. nov., isolated from dry soils of a solar saltern. Int J Syst Evol Microbiol 2013;63:2132–2137 [CrossRef][PubMed]
    [Google Scholar]
  7. Li AH, Zhou YG. Frigidibacter albus gen. nov., sp. nov., a novel member of the family Rhodobacteraceae isolated from lake water. Int J Syst Evol Microbiol 2015;65:1199–1206 [CrossRef][PubMed]
    [Google Scholar]
  8. Rothe B, Fischer A, Hirsch P, Sittig M, Stackebrandt E. The phylogenetic position of the budding bacteria Blastobacter aggregatus and Gemmobacter aquatilis gen., nov. sp. nov. Arch Microbiol 1987;147:92–99 [CrossRef]
    [Google Scholar]
  9. Helsel LO, Hollis D, Steigerwalt AG, Morey RE, Jordan J et al. Identification of "Haematobacter," a new genus of aerobic Gram-negative rods isolated from clinical specimens, and reclassification of Rhodobacter massiliensis as "Haematobacter massiliensis comb. nov.". J Clin Microbiol 2007;45:1238–1243 [CrossRef][PubMed]
    [Google Scholar]
  10. Wang D, Liu H, Zheng S, Wang G. Paenirhodobacter enshiensis gen. nov., sp. nov., a non-photosynthetic bacterium isolated from soil, and emended descriptions of the genera Rhodobacter and Haematobacter. Int J Syst Evol Microbiol 2014;64:551–558 [CrossRef][PubMed]
    [Google Scholar]
  11. Sorokin DY. Sulfitobacter pontiacus gen. nov., sp. nov.-a new heterotrophic bacterium from the Black Sea, specialized on sulfite oxidation. . Mikrobiologiya 1995;64:354–365
    [Google Scholar]
  12. Tarhriz V, Thiel V, Nematzadeh G, Hejazi MA, Imhoff JF et al. Tabrizicola aquatica gen. nov. sp. nov., a novel alphaproteobacterium isolated from Qurugöl Lake nearby Tabriz city, Iran. Antonie van Leeuwenhoek 2013;104:1205–1215 [CrossRef]
    [Google Scholar]
  13. Tarhriz V, Hirose S, Fukushima SI, Hejazi MA, Imhoff JF et al. Emended description of the genus Tabrizicola and the species Tabrizicola aquatica as aerobic anoxygenic phototrophic bacteria. Antonie van Leeuwenhoek 2019;112:1169–1175 [CrossRef][PubMed]
    [Google Scholar]
  14. Ko DJ, Kim JS, Park DS, Lee DH, Heo SY et al. Tabrizicola fusiformis sp. nov., isolated from an industrial wastewater treatment plant. Int J Syst Evol Microbiol 2018;68:1800–1805 [CrossRef][PubMed]
    [Google Scholar]
  15. Liu Y, Zhai L, Yao S, Cao Y, Cao Y et al. Brachybacterium hainanense sp. nov., isolated from noni (Morinda citrifolia L.) branch. Int J Syst Evol Microbiol 2015;65:4196–4201 [CrossRef][PubMed]
    [Google Scholar]
  16. Gerhardt P, Murray RGE, Wood WA, Krieg NR. Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994
    [Google Scholar]
  17. Gregersen T. Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbio Biotechnol 1978;5:123–127 [CrossRef]
    [Google Scholar]
  18. Yoon JH, Kang SJ, Oh TK, Tk O. Donghicola eburneus gen. nov., sp. nov., isolated from seawater of the East Sea in Korea. Int J Syst Evol Microbiol 2007;57:73–76 [CrossRef][PubMed]
    [Google Scholar]
  19. Tang X, Zhai L, Lin Y, Yao S, Wang L et al. Halomonas alkalicola sp. nov., isolated from a household product plant. Int J Syst Evol Microbiol 2017;67:1546–1550 [CrossRef][PubMed]
    [Google Scholar]
  20. Park SK, Kim MS, Jung MJ, Nam YD, Park EJ et al. Brachybacterium squillarum sp. nov., isolated from salt-fermented seafood. Int J Syst Evol Microbiol 2011;61:1118–1122 [CrossRef][PubMed]
    [Google Scholar]
  21. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing Scientific Press (English translation); 2001
    [Google Scholar]
  22. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Wiley: Chichester; 1991; pp.115–175
    [Google Scholar]
  23. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  24. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983
    [Google Scholar]
  25. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  26. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  27. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  28. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  29. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  30. Yoon S-H, Ha S-Min, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef]
    [Google Scholar]
  31. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970;12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  32. Mesbah M, Premachandran U, Whitman WB. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 1989;39:159–167 [CrossRef]
    [Google Scholar]
  33. Romano I, Nicolaus B, Lama L, Trabasso D, Caracciolo G et al. Accumulation of osmoprotectants and lipid pattern modulation in response to growth conditions by Halomonas pantelleriense. Syst Appl Microbiol 2001;24:342–352 [CrossRef][PubMed]
    [Google Scholar]
  34. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983;29:319–322 [CrossRef]
    [Google Scholar]
  35. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler O et al. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987;37:463–464
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003635
Loading
/content/journal/ijsem/10.1099/ijsem.0.003635
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error