1887

Abstract

A strain, designated 5R2A7, isolated from a high altitude Atacama Desert soil was examined by using a polyphasic approach. Strain 5R2A7 was found to have morphological, chemotaxonomic and cultural characteristics typical of members of the genus The cell wall contains - and -diaminopimelic acid, the major whole-cell sugars are glucose, ribose and xylose, the predominant menaquinones MK-10(H), MK-10(H), MK-10(H) and MK-9(H), the major polar lipids diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and an unknown glycolipid, and the predominant cellular fatty acids -C, -C and 10-methyl C. The digital genomic DNA G+C content is 72.3 mol%. Phylogenetic analysis of the 16S rRNA gene sequence indicated that strain 5R2A7 was closely related to DSM 44875 (99.8 %) and CR30 (99.7 %), and was separated readily from the latter, its closest phylogenetic neighbour, based on and multilocus sequence data, by low average nucleotide identity (92.59 %) and DNA–DNA relatedness (51.7 %) values calculated from draft genome assemblies and by a range of chemotaxonomic and phenotypic properties. Consequently, strain 5R2A7 is considered to represent a novel species of for which the name sp. nov. is proposed. The type strain is 5R2A7 (=LMG 30755=CECT 9656).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003634
2019-08-08
2019-08-18
Loading full text...

Full text loading...

References

  1. Ørskov J. Investigation into the Morphology of the Ray Fungi Copenhagen: Levin and Munksgaard; 1923
    [Google Scholar]
  2. Gao R, Liu C, Zhao J, Jia F, Yu C et al. Micromonospora jinlongensis sp. nov., isolated from muddy soil in China and emended description of the genus Micromonospora. Antonie van Leeuwenhoek 2014;105:307–315 [CrossRef][PubMed]
    [Google Scholar]
  3. Krasil’nikov NA, Fungi R. Related Organisms - Actinomycetales Moscow: Akademii Nauk USSR; 1938
    [Google Scholar]
  4. Zhi XY, Li WJ, Stackebrandt E. An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 2009;59:589–608 [CrossRef][PubMed]
    [Google Scholar]
  5. Genilloud O, Genus I, Ørskov M. 156AL Bergey’s manual of systematic bacteriology. In Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki KI et al. (editors) The Actinobacteria, Part B, 2nd ed.vol. 5, 2012 New York: Springer; pp.1039–1057
    [Google Scholar]
  6. Foulerton A. New species of Streptothrix isolated from the air. Lancet 1905;1199–1200
    [Google Scholar]
  7. Genilloud O, Genus I. Micromonospora Ørskov 1923, 156AL. In Goodfellow M, Kämpfer P, Busse HJ, Trujillo ME, Suzuki KI et al. (editors) Bergey’s Manual of Systematic Bacteriology The Actinobacteria, Part B, 2nd ed.vol. 5, 2012 New York: Springer; pp.1035–1038
    [Google Scholar]
  8. Carro L, Nouioui I, Sangal V, Meier-Kolthoff JP, Trujillo ME et al. Genome-based classification of micromonosporae with a focus on their biotechnological and ecological potential. Sci Rep 2018;8:525 [CrossRef][PubMed]
    [Google Scholar]
  9. Trujillo ME, Bacigalupe R, Pujic P, Igarashi Y, Benito P et al. Genome features of the endophytic actinobacterium Micromonospora lupini strain Lupac 08: on the process of adaptation to an endophytic life style?. PLoS One 2014;9:e108522 [CrossRef][PubMed]
    [Google Scholar]
  10. Boumehira AZ, El-Enshasy HA, Hacène H, Elsayed EA, Aziz R et al. Recent progress on the development of antibiotics from the genus Micromonospora. Biotechnol Bioproc E 2016;21:199–223 [CrossRef]
    [Google Scholar]
  11. Braesel J, Crnkovic CM, Kunstman KJ, Green SJ, Maienschein-Cline M et al. Complete genome of Micromonospora sp. strain B006 reveals biosynthetic potential of a Lake Michigan actinomycete. J Nat Prod 2018;81:2057–2068 [CrossRef][PubMed]
    [Google Scholar]
  12. Bull AT, Asenjo JA, Goodfellow M, Gómez-Silva B. The Atacama Desert: Technical resources and the growing importance of novel microbial diversity. Annu Rev Microbiol 2016;70:215–234 [CrossRef][PubMed]
    [Google Scholar]
  13. Carro L, Razmilic V, Nouioui I, Richardson L, Pan C et al. Hunting for cultivable Micromonospora strains in soils of the Atacama Desert. Antonie van Leeuwenhoek 2018;111:1375–1387 [CrossRef][PubMed]
    [Google Scholar]
  14. Goodfellow M, Nouioui I, Sanderson R, Xie F, Bull AT. Rare taxa and dark microbial matter: novel bioactive actinobacteria abound in Atacama Desert soils. Antonie van Leeuwenhoek 2018;111:1315–1332 [CrossRef][PubMed]
    [Google Scholar]
  15. Goodfellow M, Fiedler HP. A guide to successful bioprospecting: informed by actinobacterial systematics. Antonie van Leeuwenhoek 2010;98:119–142 [CrossRef][PubMed]
    [Google Scholar]
  16. Trujillo ME, Kroppenstedt RM, Schumann P, Carro L, Martínez-Molina E. Micromonospora coriariae sp. nov., isolated from root nodules of Coriaria myrtifolia. Int J Syst Evol Microbiol 2006;56:2381–2385 [CrossRef][PubMed]
    [Google Scholar]
  17. Carro L, Pukall R, Spröer C, Kroppenstedt RM, Trujillo ME. Micromonospora cremea sp. nov. and Micromonospora zamorensis sp. nov., isolated from the rhizosphere of Pisum sativum. Int J Syst Evol Microbiol 2012;62:2971–2977 [CrossRef][PubMed]
    [Google Scholar]
  18. Bull AT, Idris H, Sanderson R, Asenjo J, Andrews B et al. High altitude, hyper-arid soils of the Central-Andes harbor mega-diverse communities of actinobacteria. Extremophiles 2018;22:47–57 [CrossRef][PubMed]
    [Google Scholar]
  19. Reasoner DJ, Blannon JC, Geldreich EE. Rapid seven-hour fecal coliform test. Appl Environ Microbiol 1979;38:229–236[PubMed]
    [Google Scholar]
  20. Goodfellow M, Hill IR, Gray TRG. Bacteria in a pine forest soil. In Gray TRG, Parkinson D. (editors) The Ecology of Soil Bacteria Liverpool: University Press; 1967; pp.500–515
    [Google Scholar]
  21. Jones KL. Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 1949;57:141–145[PubMed]
    [Google Scholar]
  22. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16:313–340 [CrossRef]
    [Google Scholar]
  23. Zakharova OS, Zenova GM, Zvyagintsev DG. Some approaches to the selective isolation of actinomycetes of the genus Actinomadura from soil. Microbiology 2003;72:110–113 [CrossRef]
    [Google Scholar]
  24. Trujillo ME, Fernández-Molinero C, Velázquez E, Kroppenstedt RM, Schumann P et al. Micromonospora mirobrigensis sp. nov. Int J Syst Evol Microbiol 2005;55:877–880 [CrossRef][PubMed]
    [Google Scholar]
  25. Atlas RM. Handbook of Microbiological Media, 3rd ed. Boca Raton: CRC Press; 2004
    [Google Scholar]
  26. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974;28:226–231[PubMed]
    [Google Scholar]
  27. Collins MD, Goodfellow M, Minnikin DE, Alderson G. Menaquinone composition of mycolic acid-containing actinomycetes and some sporoactinomycetes. J Appl Bacteriol 1985;58:77–86 [CrossRef][PubMed]
    [Google Scholar]
  28. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  29. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970;20:435–443 [CrossRef]
    [Google Scholar]
  30. Uchida K, Kudo T, Suzuki KI, Nakase T. A new rapid method of glycolate test by diethyl ether extraction, which is applicable to a small amount of bacterial cells of less than one milligram. J Gen Appl Microbiol 1999;45:49–56 [CrossRef][PubMed]
    [Google Scholar]
  31. Sasser MJ. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Del: Microbial ID Inc: Newark; 1990
    [Google Scholar]
  32. Golinska P, Ahmed L, Wang D, Goodfellow M. Streptacidiphilus durhamensis sp. nov., isolated from a spruce forest soil. Antonie Van Leeuwenhoek 2013;104:199–206 [CrossRef][PubMed]
    [Google Scholar]
  33. Golinska P, Wang D, Goodfellow M. Nocardia aciditolerans sp. nov., isolated from a spruce forest soil. Antonie Van Leeuwenhoek 2013;103:1079–1088 [CrossRef][PubMed]
    [Google Scholar]
  34. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  35. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  36. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425
    [Google Scholar]
  37. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  38. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger Datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  39. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  40. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  41. Carro L, Spröer C, Alonso P, Trujillo ME. Diversity of Micromonospora strains isolated from nitrogen fixing nodules and rhizosphere of Pisum sativum analyzed by multilocus sequence analysis. Syst Appl Microbiol 2012;35:73–80 [CrossRef][PubMed]
    [Google Scholar]
  42. Garcia LC, Martínez-Molina E, Trujillo ME. Micromonospora pisi sp. nov., isolated from root nodules of Pisum sativum. Int J Syst Evol Microbiol 2010;60:331–337 [CrossRef][PubMed]
    [Google Scholar]
  43. Tomita K, Hoshino Y, Ohkusa N, Tsuno T, Miyaki T. Micromonospora chersina sp. nov. Actinomycetologica 1992;6:21–28 [CrossRef]
    [Google Scholar]
  44. Hirsch P, Mevs U, Kroppenstedt RM, Schumann P, Stackebrandt E. Cryptoendolithic actinomycetes from antarctic sandstone rock samples: Micromonospora endolithica sp. nov. and two isolates related to Micromonospora coerulea Jensen 1932. Syst Appl Microbiol 2004;27:166–174 [CrossRef][PubMed]
    [Google Scholar]
  45. Kawamoto I, Okachi R, Kato H, Yamamoto S, Takahashi I et al. The antibiotic XK-41 complex. I. Production, isolation and characterization. J Antibiot 1974;27:493–501[PubMed]
    [Google Scholar]
  46. Kaewkla O, Thamchaipenet A, Franco CM. Micromonospora terminaliae sp. nov., an endophytic actinobacterium isolated from the surface-sterilized stem of the medicinal plant Terminalia mucronata. Int J Syst Evol Microbiol 2017;67:225–230 [CrossRef][PubMed]
    [Google Scholar]
  47. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the Bacteria and Archaea. Int J Syst Evol Microbiol 2014;64:316–324 [CrossRef][PubMed]
    [Google Scholar]
  48. Kasai H, Tamura T, Harayama S. Intrageneric relationships among Micromonospora species deduced from gyrB-based phylogeny and DNA relatedness. Int J Syst Evol Microbiol 2000;50 Pt 1:127–134 [CrossRef][PubMed]
    [Google Scholar]
  49. Ara I, Kudo T. Two new species of the genus Micromonospora: Micromonospora chokoriensis sp. nov. and Micromonospora coxensis sp. nov., isolated from sandy soil. J Gen Appl Microbiol 2007;53:29–37 [CrossRef][PubMed]
    [Google Scholar]
  50. Trujillo ME, Kroppenstedt RM, Fernández-Molinero C, Schumann P, Martínez-Molina E. Micromonospora lupini sp. nov. and Micromonospora saelicesensis sp. nov., isolated from root nodules of Lupinus angustifolius. Int J Syst Evol Microbiol 2007;57:2799–2804 [CrossRef][PubMed]
    [Google Scholar]
  51. Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A et al. Assembling genomes and mini-metagenomes from highly chimeric reads. In Deng M, Jiang R, Sun F, Zhang X. (editors) Research in Computational Molecular Biology. RECOMB 2013. Lecture Notes in Computer Sciencevol. 7821 Berlin, Heidelberg: Springer; 2013; pp.158–170
    [Google Scholar]
  52. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013;195:413–418 [CrossRef][PubMed]
    [Google Scholar]
  53. Rodriguez LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Preprints 2016
    [Google Scholar]
  54. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  55. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  56. Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ et al. AntiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res 2017;45:W36–W41 [CrossRef][PubMed]
    [Google Scholar]
  57. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014;42:D206–D214 [CrossRef][PubMed]
    [Google Scholar]
  58. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T et al. The RAST server: rapid annotations using subsystems technology. BMC Genomics 2008;9:75 [CrossRef][PubMed]
    [Google Scholar]
  59. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S et al. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci Rep 2015;5:8365 [CrossRef][PubMed]
    [Google Scholar]
  60. Vanittanakom N, Loeffler W, Koch U, Jung G. Fengycin a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. J Antibiot 1986;39:888–901 [CrossRef][PubMed]
    [Google Scholar]
  61. Carro L, Castro JF, Razmilic V, Nouioui I, Pan C et al. Uncovering the potential of novel micromonosporae isolated from an extreme hyper-arid Atacama Desert soil. Sci Rep 2019;9:4678 [CrossRef][PubMed]
    [Google Scholar]
  62. Carro L, Riesco R, Spröer C, Trujillo ME. Micromonospora ureilytica sp. nov., Micromonospora noduli sp. nov. and Micromonospora vinacea sp. nov., isolated from Pisum sativum nodules. Int J Syst Evol Microbiol 2016;66:3509–3514 [CrossRef][PubMed]
    [Google Scholar]
  63. Murray PR, Boron EJ, Pfaller MA, Tenover FC, Yolken RH et al. Manual of Clinical Microbiology, 7th ed. Washington, DC: ASM Press; 1999
    [Google Scholar]
  64. Vaas LA, Sikorski J, Hofner B, Fiebig A, Buddruhs N et al. Opm: an R package for analysing OmniLog(R) phenotype microarray data. Bioinformatics 2013;29:1823–1824 [CrossRef][PubMed]
    [Google Scholar]
  65. Vaas LA, Sikorski J, Michael V, Göker M, Klenk HP. Visualization and curve-parameter estimation strategies for efficient exploration of phenotype microarray kinetics. PLoS One 2012;7:e34846 [CrossRef][PubMed]
    [Google Scholar]
  66. Idris H, Goodfellow M, Sanderson R, Asenjo JA, Bull AT. Actinobacterial rare biospheres and dark matter revealed in habitats of the Chilean Atacama desert. Sci Rep 2017;7:8373 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003634
Loading
/content/journal/ijsem/10.1099/ijsem.0.003634
Loading

Data & Media loading...

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error