1887

Abstract

A Gram-negative bacterium, namely strain ANRC-JHZ47, was isolated from a seawater sample collected at Biological Bay, Fildes Peninsula, Antarctica. Cells of strain ANRC-JHZ47 were rod-shaped and motile by a single polar flagellum. Strain ANRC-JHZ47 was aerobic, oxidase-negative, and catalase-positive. The strain grew at 4–37 °C (optimum, 25 °C), pH at 3.5–10.0 (optimum, pH 5.5) and in NaCl at 1–7.0 % (w/v; optimum, 2–3 %). Strain ANRC-JHZ47 used Q-8 as the predominant respiratory quinone. Its predominant fatty acids were C (21.9 %), C (12.6 %), Ccyclo 8 (12.4 %), summed feature 3 (Cω7 and/or Cω6; 13.1 %), C 3-OH (11.3 %) and summed feature 8 (Cω7 and/or Cω6; 6.0 %). Its major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, one unidentified aminolipid and five unknown polar lipids. The DNA G+C content was 42.6 mol%. Strain ANRC-JHZ47 showed the highest 16S rRNA gene sequence similarity to KMM 3893 (97.9 %), followed by KMM 3633 (97.6 %), D104 (97.2 %) and IVIA-Po-185 (97.0 %). Furthermore, the average nucleotide identity values between strain ANRC-JHZ47 and KMM 3893, KMM 3633 and D104 were 79.8, 74.0, and 74.1 %, respectively. The DNA–DNA hybridization values between them were 22.5±2.5, 20.4±2.3 and 19.9±2.3 %, respectively. Based on the results of phenotypic and phylogenetic analyses, strain ANRC-JHZ47 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is ANRC-JHZ47 (=MCCC 1K03604=KCTC 72113).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003631
2019-08-05
2019-10-13
Loading full text...

Full text loading...

References

  1. Van Landschoot A, De Ley J. Intra- and intergenic similarities of the rRNA cistrons of Alteromonas, Marinomonas (gen. nov.) and some other Gram negative bacteria. J Gen Microbiol1983:3057–3074
    [Google Scholar]
  2. Romanenko LA, Tanaka N, Frolova GM. Marinomonas arenicola sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2009;59:2834–2838 [CrossRef][PubMed]
    [Google Scholar]
  3. Romanenko LA, Uchino M, Mikhailov VV, Zhukova NV, Uchimura T. Marinomonas primoryensis sp. nov., a novel psychrophile isolated from coastal sea-ice in the Sea of Japan. Int J Syst Evol Microbiol 2003;53:829–832 [CrossRef][PubMed]
    [Google Scholar]
  4. Bai X, Lai Q, Dong C, Li F, Shao Z. Marinomonas profundimaris sp. nov., isolated from deep-sea sediment sample of the Arctic Ocean. Antonie van Leeuwenhoek 2014;106:449–455 [CrossRef][PubMed]
    [Google Scholar]
  5. Espinosa E, Marco-Noales E, Gómez D, Lucas-Elío P, Ordax M et al. Taxonomic study of Marinomonas strains isolated from the seagrass Posidonia oceanica, with descriptions of Marinomonas balearica sp. nov. and Marinomonas pollencensis sp. nov. Int J Syst Evol Microbiol 2010;60:93–98 [CrossRef][PubMed]
    [Google Scholar]
  6. Parte AC. LPSN - list of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018;68:1825–1829 [CrossRef][PubMed]
    [Google Scholar]
  7. Ojha AK, Verma A, Pal Y, Bhatt D, Mayilraj S et al. Marinomonas epiphytica sp. nov., isolated from a marine intertidal macroalga. Int J Syst Evol Microbiol 2017;67:2746–2751 [CrossRef][PubMed]
    [Google Scholar]
  8. Kristyanto S, Chaudhary DK, Lee SS, Kim J. Characterization of Marinomonas algicida sp. nov., a novel algicidal marine bacterium isolated from seawater. Int J Syst Evol Microbiol 2017;67:4777–4784 [CrossRef][PubMed]
    [Google Scholar]
  9. Yoon JH, Kang SJ, Oh TK. Marinomonas dokdonensis sp. nov., isolated from sea water. Int J Syst Evol Microbiol 2005;55:2303–2307 [CrossRef][PubMed]
    [Google Scholar]
  10. Zhang DC, Li HR, Xin YH, Liu HC, Chen B et al. Marinomonas arctica sp. nov., a psychrotolerant bacterium isolated from the Arctic. Int J Syst Evol Microbiol 2008;58:1715–1718 [CrossRef][PubMed]
    [Google Scholar]
  11. Han X, Zhang J, Zhang Y, Liu J, Fang W et al. Amphritea opalescens sp. nov., isolated from sediment adjacent to Fildes Peninsula, Antarctica. Int J Syst Evol Microbiol 2019;69:1585–1590 [CrossRef][PubMed]
    [Google Scholar]
  12. Felföldi T, Somogyi B, Márialigeti K, Vörös L. Characterization of photoautotrophic picoplankton assemblages in turbid, alkaline lakes of the Carpathian Basin (Central Europe). J Limnol 2009;68:385–395 [CrossRef]
    [Google Scholar]
  13. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  14. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  16. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  17. Rzhetsky A, Nei M. Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol 1992;35:367–375 [CrossRef][PubMed]
    [Google Scholar]
  18. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012;1:18 [CrossRef][PubMed]
    [Google Scholar]
  19. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013;195:413–418 [CrossRef][PubMed]
    [Google Scholar]
  20. Auch AF, Klenk HP, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2010;2:142–148 [CrossRef][PubMed]
    [Google Scholar]
  21. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  22. Wayne L, Brenner DJ, Colwell RR, Grimont PAD, Kandler O. International committee on systematic bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 1987;37:463–464
    [Google Scholar]
  23. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  24. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology (English translation) Beijing: Scientific Press; 2001
    [Google Scholar]
  25. Zhang DC, Margesin R. Marinomonas mangrovi sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2015;65:1537–1541 [CrossRef][PubMed]
    [Google Scholar]
  26. Lasa A, Pichon P, Diéguez AL, Romalde JL. Marinomonas gallaica sp. nov. and Marinomonas atlantica sp. nov., isolated from reared clams (Ruditapes decussatus). Int J Syst Evol Microbiol 2016;66:3183–3188 [CrossRef][PubMed]
    [Google Scholar]
  27. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical 1990 Note 101. Newark, DE: MIDI Inc;
    [Google Scholar]
  28. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994; pp.121–161
    [Google Scholar]
  29. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987;19:161–207
    [Google Scholar]
  30. Kates M. Techniques of Lipidology, 2nd ed. Amsterdam: Elsevier; 1986; pp.106–241–107246
    [Google Scholar]
  31. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981;45:316–354[PubMed]
    [Google Scholar]
  32. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  33. Prabagaran SR, Suresh K, Manorama R, Delille D, Shivaji S. Marinomonas ushuaiensis sp. nov., isolated from coastal sea water in Ushuaia, Argentina, sub-Antarctica. Int J Syst Evol Microbiol 2005;55:309–313 [CrossRef][PubMed]
    [Google Scholar]
  34. Kumari P, Poddar A, das SK. Marinomonas fungiae sp. nov., isolated from the coral Fungia echinata from the Andaman Sea. Int J Syst Evol Microbiol 2014;64:487–494 [CrossRef][PubMed]
    [Google Scholar]
  35. Lucena T, Mesa J, Rodriguez-Llorente ID, Pajuelo E, Caviedes et al. Marinomonas spartinae sp. nov., a novel species with plant-beneficial properties. Int J Syst Evol Microbiol 2016;66:1686–1691 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003631
Loading
/content/journal/ijsem/10.1099/ijsem.0.003631
Loading

Data & Media loading...

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error