1887

Abstract

A mesophilic, straight-rod-shaped, non-flagellated bacterium, designated MEBiC05444, was isolated from a marine sponge collected from Chuuk lagoon, Federated States of Micronesia. The strain was Gram-negative, catalase- and oxidase-positive, and facultative anaerobic. The isolate aerobically grew at 8–38 °C (optimum, 24–32 °C), pH 4.0–10.0 (pH 7.0–7.5) with an absolute requirement for Na up to 6 % (w/v) NaCl (2 %). Phylogenetic analyses based on 16S rRNA gene sequences revealed that MEBiC05444 belonged to the family , within the class Gammaproteobacteria. Strain MEBiC05444 showed highest 16S rRNA gene sequence similarity to C51, followed by [] UST040317-058 and HJ039 (98.9 %, 97.2 and 95.7 %, respectively). In the phylogenetic tree based on the 16S rRNA gene sequences, MEBiC05444 formed a cluster with C51, but the average nucleotide identity value between the two strains was 82 %, thus confirming their separation at species level. The major fatty acids were iso-C (19.7 %), summed feature 3 (composed of C ω7 and/or Cω6; 16.1 %) and Cω8 (10.2 %). The only detected respiratory quinone was ubiquinone Q-8. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, three unidentified aminoglycolipids, two unidentified glycolipids, an unidentified aminoglycophospholipid and an unidentified lipid. The genomic DNA G+C content of strain MEBiC05444 was 40.8 mol%. Based on the results of polyphasic analysis, the strain represents a novel species of the genus , distinct from C51, [ UST040317-058 and HJ039 for which the name sp. nov. is proposed with type strain MEBiC05444 (=KCCM 43304=JCM 16653).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003617
2019-10-01
2019-10-21
Loading full text...

Full text loading...

References

  1. Ivanova EP, Flavier S, Christen R. Phylogenetic relationships among marine Alteromonas-like proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam. nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov. Int J Syst Evol Microbiol 2004;54:1773–1788 [CrossRef][PubMed]
    [Google Scholar]
  2. Macdonell MT, Colwell RR. Phylogeny of the vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Syst Appl Microbiol 1985;6:171–182 [CrossRef]
    [Google Scholar]
  3. Nogi Y, Abe M, Kawagucci S, Hirayama H. Psychrobium conchae gen. nov., sp. nov., a psychrophilic marine bacterium isolated from the Iheya North hydrothermal field. Int J Syst Evol Microbiol 2014;64:3668–3675 [CrossRef][PubMed]
    [Google Scholar]
  4. Xu S, Yu K, Su H, Chen B, Huang W et al. Proposal of Parashewanella gen. nov. to accommodate Parashewanella curva sp. nov. and Parashewanella spongiae comb. nov. in the Shewanellaceae. Int J Syst Evol Microbiol 2019;69:1259–1264 [CrossRef][PubMed]
    [Google Scholar]
  5. Xu M, Guo J, Cen Y, Zhong X, Cao W et al. Shewanella decolorationis sp. nov., a dye-decolorizing bacterium isolated from activated sludge of a waste-water treatment plant. Int J Syst Evol Microbiol 2005;55:363–368 [CrossRef][PubMed]
    [Google Scholar]
  6. Yoon JH, Kang KH, Oh TK, Park YH. Shewanella gaetbuli sp. nov., a slight halophile isolated from a tidal flat in Korea. Int J Syst Evol Microbiol 2004;54:487–491 [CrossRef][PubMed]
    [Google Scholar]
  7. Venkateswaran K, Dollhopf ME, Aller R, Stackebrandt E, Nealson KH. Shewanella amazonensis sp. nov., a novel metal-reducing facultative anaerobe from Amazonian shelf muds. Int J Syst Bacteriol 1998;48 Pt 3:965–972 [CrossRef][PubMed]
    [Google Scholar]
  8. Holmes B, Lapage SP, Malnick H. Strains of Pseudomonas putrefaciens from clinical material. J Clin Pathol 1975;28:149–155 [CrossRef][PubMed]
    [Google Scholar]
  9. Yang SH, Kwon KK, Lee HS, Kim SJ. Shewanella spongiae sp. nov., isolated from a marine sponge. Int J Syst Evol Microbiol 2006;56:2879–2882 [CrossRef][PubMed]
    [Google Scholar]
  10. Rameshkumar N. The status of the species Shewanella irciniae Lee et al. 2006. Request for an opinion. Int J Syst Evol Microbiol 2015;65:2774–2775 [CrossRef][PubMed]
    [Google Scholar]
  11. Lee OO, Lau SC, Tsoi MM, Li X, Plakhotnikova I et al. Shewanella irciniae sp. nov., a novel member of the family Shewanellaceae, isolated from the marine sponge Ircinia dendroides in the Bay of Villefranche, Mediterranean Sea. Int J Syst Evol Microbiol 2006;56:2871–2877 [CrossRef][PubMed]
    [Google Scholar]
  12. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  13. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  14. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  15. Swofford DL. PAUP*. Phylogenetic Analysis Using Parsimony (*and other Methods) Version 4 Massachusetts, USA: Sinauer, Sunderland; 2003; pp.233–234
    [Google Scholar]
  16. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  17. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120[PubMed]
    [Google Scholar]
  18. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  19. Na SI, Kim YO, Yoon SH, Ha SM, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018;56:280–285 [CrossRef][PubMed]
    [Google Scholar]
  20. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  21. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982;44:992–993[PubMed]
    [Google Scholar]
  22. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966;45:493–496 [CrossRef][PubMed]
    [Google Scholar]
  23. Liu SV, Zhou J, Zhang C, Cole DR, Gajdarziska-Josifovska M et al. Thermophilic Fe(III)-reducing bacteria from the deep subsurface: the evolutionary implications. Science 1997;277:1106–1109 [CrossRef]
    [Google Scholar]
  24. Miller TL, Wolin MJ. A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl Microbiol 1974;27:985–987[PubMed]
    [Google Scholar]
  25. Bowman JP, Mccammon SA, Nichols DS, Skerratt JH, Rea SM et al. Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20:5 omega 3) and grow anaerobically by dissimilatory Fe(III) reduction. Int J Syst Bacteriol 1997;47:1040–1047 [CrossRef][PubMed]
    [Google Scholar]
  26. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  27. Collins M. Isoprenoid quinone analysis in bacterial classification and identification. Chemical Methods in Bacterial Systematics 1985;267–285
    [Google Scholar]
  28. Akagawa-Matsushita M, Itoh T, Katayama Y, Kuraishi H, Yamasato K. Isoprenoid quinone composition of some marine Alteromonas, Marinomonas, Deleya, Pseudomonas and Shewanella species. J Gen Microbiol 1992;138:2275–2281 [CrossRef]
    [Google Scholar]
  29. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003617
Loading
/content/journal/ijsem/10.1099/ijsem.0.003617
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error