1887

Abstract

A Gram-stain-negative, aerobic, non-motile and ovoid or rod-shaped bacterial strain, HSMS-29, was isolated from a marine sand sample collected from the Yellow Sea, Republic of Korea. The neighbour-joining phylogenetic tree of 16S rRNA gene sequences showed that strain HSMS-29 fell within the clade comprising the type strains of species. Strain HSMS-29 exhibited 16S rRNA gene sequence similarities of 97.2–98.4 % to the type strains of , , , , , , and and 96.3–96.9 % to the type strains of the other species. The genomic ANI values of strain HSMS-29 with the type strains of , , , , , and were 72.66–74.99 %. The DNA–DNA relatedness value between strain HSMS-29 and the type strain of was 17 %. Strain HSMS-29 contained Q-10 as the predominant ubiquinone and C 7 as the major fatty acid. The major polar lipids of strain HSMS-29 were phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, one unidentified aminolipid and one unidentified lipid. The DNA G+C content of strain HSMS-29 was 65.0 mol% (HPLC) or 64.4 % (genome analysis). Distinguished phenotypic properties, along with the phylogenetic and genetic distinctiveness, revealed that strain HSMS-29 is separated from recognized species. On the basis of the data presented here, strain HSMS-29 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is HSMS-29 (=KACC 19870=NBRC 113549).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003614
2019-10-01
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/10/3230.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003614&mimeType=html&fmt=ahah

References

  1. Garrity GM, Bell JA, Lilburn T. Family I. Rhodobacteraceae fam. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 2 New York: Springer; 2005 pp. 161
    [Google Scholar]
  2. Sorokin DY. Sulfitobacter pontiacus gen. nov., sp. nov. - a new heterotrophic bacterium from the Black Sea, specialized on sulfite oxidation. Mikrobiologiya 1995; 64:354–365
    [Google Scholar]
  3. Parte AC. LPSN - List of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article][PubMed]
    [Google Scholar]
  4. Kumari P, Bhattacharjee S, Poddar A, das SK. Sulfitobacter faviae sp. nov., isolated from the coral Faviaveroni. Int J Syst Evol Microbiol 2016; 66:3786–3792 [View Article][PubMed]
    [Google Scholar]
  5. Park AY, Teeravet S, Pheng S, Lee JR, Kim SG et al. Sulfitobacter aestuarii sp. nov., a marine bacterium isolated from a tidal flat of the Yellow Sea. Int J Syst Evol Microbiol 2018; 68:1771–1775 [View Article][PubMed]
    [Google Scholar]
  6. Pukall R, Buntefuss D, Frühling A, Rohde M, Kroppenstedt RM et al. Sulfitobacter mediterraneus sp. nov., a new sulfite-oxidizing member of the alpha-Proteobacteria . Int J Syst Bacteriol 1999; 49:513–519 [View Article][PubMed]
    [Google Scholar]
  7. Labrenz M, Tindall BJ, Lawson PA, Collins MD, Schumann P et al. Staleya guttiformis gen. nov., sp. nov. and Sulfitobacter brevis sp. nov., alpha-3-Proteobacteria from hypersaline, heliothermal and meromictic antarctic Ekho Lake. Int J Syst Evol Microbiol 2000; 50 Pt 1:303–313 [View Article][PubMed]
    [Google Scholar]
  8. Ivanova EP, Gorshkova NM, Sawabe T, Zhukova NV, Hayashi K et al. Sulfitobacter delicatus sp. nov. and Sulfitobacter dubius sp. nov., respectively from a starfish (Stellaster equestris) and sea grass (Zostera marina). Int J Syst Evol Microbiol 2004; 54:475–480 [View Article][PubMed]
    [Google Scholar]
  9. Yoon JH, Kang SJ, Oh TK. Sulfitobacter marinus sp. nov., isolated from seawater of the East Sea in Korea. Int J Syst Evol Microbiol 2007; 57:302–305 [View Article][PubMed]
    [Google Scholar]
  10. Yoon JH, Kang SJ, Lee MH, Oh TK. Description of Sulfitobacter donghicola sp. nov., isolated from seawater of the East Sea in Korea, transfer of Staleya guttiformis Labrenz et al. 2000 to the genus Sulfitobacter as Sulfitobacter guttiformis comb. nov. and emended description of the genus Sulfitobacter . Int J Syst Evol Microbiol 2007; 57:1788–1792 [View Article][PubMed]
    [Google Scholar]
  11. Park JR, Bae JW, Nam YD, Chang HW, Kwon HY et al. Sulfitobacter litoralis sp. nov., a marine bacterium isolated from the East Sea, Korea. Int J Syst Evol Microbiol 2007; 57:692–695 [View Article][PubMed]
    [Google Scholar]
  12. Fukui Y, Abe M, Kobayashi M, Shimada Y, Saito H et al. Sulfitobacter porphyrae sp. nov., isolated from the red alga Porphyra yezoensis . Int J Syst Evol Microbiol 2014; 64:438–443 [View Article][PubMed]
    [Google Scholar]
  13. Kwak MJ, Lee JS, Lee KC, Kim KK, Eom MK et al. Sulfitobacter geojensis sp. nov., Sulfitobacter noctilucae sp. nov., and Sulfitobacter noctilucicola sp. nov., isolated from coastal seawater. Int J Syst Evol Microbiol 2014; 64:3760–3767 [View Article][PubMed]
    [Google Scholar]
  14. Park S, Jung YT, Won SM, Park JM, Yoon JH. Sulfitobacter undariae sp. nov., isolated from a brown algae reservoir. Int J Syst Evol Microbiol 2015; 65:1672–1678 [View Article][PubMed]
    [Google Scholar]
  15. Yoon J-H, Lee ST, Kim S-B, Kim WY, Goodfellow M et al. Restriction fragment length polymorphism analysis of PCR-Amplified 16S ribosomal DNA for rapid identification of Saccharomonospora strains. Int J Syst Bacteriol 1997; 47:111–114 [View Article]
    [Google Scholar]
  16. Yoon JH, Kim H, Kim IG, Kang KH, Park YH. Erythrobacter flavus sp. nov., a slight halophile from the East Sea in Korea. Int J Syst Evol Microbiol 2003; 53:1169–1174 [View Article][PubMed]
    [Google Scholar]
  17. Tritt A, Eisen JA, Facciotti MT, Darling AE. An integrated pipeline for de novo assembly of microbial genomes. PLoS One 2012; 7:e42304 [View Article][PubMed]
    [Google Scholar]
  18. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  19. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984; 25:125–128 [View Article]
    [Google Scholar]
  20. Park S, Jung YT, Choi SJ, Yoon JH. Erythrobacter aquimixticola sp. nov., isolated from the junction between the ocean and a freshwater spring. Int J Syst Evol Microbiol 2017; 67:2964–2969 [View Article][PubMed]
    [Google Scholar]
  21. Ezaki T, Hashimoto Y, Yabuuchi E. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 1989; 39:224–229 [View Article]
    [Google Scholar]
  22. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  23. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  24. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  25. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Modern Microbial Methods. Chemical Methods in Prokaryotic Systematics Chichester: John Wiley & Sons; 1994 pp. 121–161
    [Google Scholar]
  26. Park S, Won SM, Kim H, Park DS, Yoon JH. Aestuariivita boseongensis gen. nov., sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014; 64:2969–2974 [View Article][PubMed]
    [Google Scholar]
  27. Lányí B. Classical and rapid identification methods for medically important bacteria. Methods Mocrobiol 1987; 19:1–67
    [Google Scholar]
  28. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001; 51:1997–2006 [View Article][PubMed]
    [Google Scholar]
  29. Barrow GI, Cowan F. Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: Cambridge University Press; 1993
    [Google Scholar]
  30. Baumann P, Baumann L. The marine Gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes . In Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG et al. (editors) The Prokaryotes Berlin: Springer; 1981 pp. 1302–1331
    [Google Scholar]
  31. Cohen-Bazire G, Sistrom WR, Stanier RY. Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Comp Physiol 1957; 49:25–68 [View Article][PubMed]
    [Google Scholar]
  32. Staley JT. Prosthecomicrobium and Ancalomicrobium: new prosthecate freshwater bacteria. J Bacteriol 1968; 95:1921–1942[PubMed]
    [Google Scholar]
  33. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  34. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  35. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.003614
Loading
/content/journal/ijsem/10.1099/ijsem.0.003614
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error