1887

Abstract

Strain HMF7854, isolated from a ginkgo tree, was an orange-pigmented, Gram-stain-negative, motile by means of a single flagellum, strictly aerobic, rod-shaped bacterium. The isolate grew optimally on Reasoner's 2A agar at 30 °C, pH 7.0–8.0 and 0 % NaCl. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain HMF7854 belonged to the genus and was most closely related to HKS-06 (96.8 % sequence similarity). The major fatty acids were C ω6, summed feature 8 (Cω7 and/or Cω6), summed feature 3 (Cω7 and/or Cω6) and C. The predominant isoprenoid quinone was ubiquinone-10. The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, sphingoglycolipid, two unidentified lipids and two unidentified glycolipids. The genomic DNA G+C content was 68.4 mol%. Thus, based on its phylogenetic, phenotypic and chemotaxonomic data, strain HMF7854 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain of the species is strain HMF7854 (=KCTC 62461=NBRC 113337).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003613
2019-10-01
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/10/3224.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003613&mimeType=html&fmt=ahah

References

  1. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas . Microbiol Immunol 1990; 34:99–119 [View Article][PubMed]
    [Google Scholar]
  2. Takeuchi M, Sakane T, Yanagi M, Yamasato K, Hamana K et al. Taxonomic study of bacteria isolated from plants: proposal of Sphingomonas rosa sp. nov., Sphingomonas pruni sp. nov., Sphingomonas asaccharolytica sp. nov., and Sphingomonas mali sp. nov. Int J Syst Bacteriol 1995; 45:334–341 [View Article][PubMed]
    [Google Scholar]
  3. Lee JS, Shin YK, Yoon JH, Takeuchi M, Pyun YR et al. Sphingomonas aquatilis sp. nov., Sphingomonas koreensis sp. nov., and Sphingomonas taejonensis sp. nov., yellow-pigmented bacteria isolated from natural mineral water. Int J Syst Evol Microbiol 2001; 51:1491–1498 [View Article][PubMed]
    [Google Scholar]
  4. Yang DC, Im WT, Kim MK, Ohta H, Lee ST. Sphingomonas soli sp. nov., a beta-glucosidase-producing bacterium in the family Sphingomonadaceae in the alpha-4 subgroup of the Proteobacteria. Int J Syst Evol Microbiol 2006; 56:703–707 [View Article][PubMed]
    [Google Scholar]
  5. Romanenko LA, Uchino M, Frolova GM, Tanaka N, Kalinovskaya NI et al. Sphingomonas molluscorum sp. nov., a novel marine isolate with antimicrobial activity. Int J Syst Evol Microbiol 2007; 57:358–363 [View Article][PubMed]
    [Google Scholar]
  6. An H, Xu M, Dai J, Wang Y, Cai F et al. Sphingomonas xinjiangensis sp. nov., isolated from desert sand. Int J Syst Evol Microbiol 2011; 61:1865–1869 [View Article][PubMed]
    [Google Scholar]
  7. Huang HY, Li J, Zhao GZ, Zhu WY, Yang LL et al. Sphingomonas endophytica sp. nov., isolated from Artemisia annua L. Int J Syst Evol Microbiol 2012; 62:1576–1580 [View Article][PubMed]
    [Google Scholar]
  8. Kim SJ, Moon JY, Lim JM, Ahn JH, Weon HY et al. Sphingomonas aerophila sp. nov. and Sphingomonas naasensis sp. nov., isolated from air and soil, respectively. Int J Syst Evol Microbiol 2014; 64:926–932 [View Article][PubMed]
    [Google Scholar]
  9. Ahn JH, Kim BC, Kim SJ, Lee GH, Song J et al. Sphingomonas parvus sp. nov. isolated from a ginseng-cultivated soil. J Microbiol 2015; 53:673–677 [View Article][PubMed]
    [Google Scholar]
  10. Zhu L, Si M, Li C, Xin K, Chen C et al. Sphingomonas gei sp. nov., isolated from roots of Geum aleppicum . Int J Syst Evol Microbiol 2015; 65:1160–1166 [View Article][PubMed]
    [Google Scholar]
  11. Liu Q, Liu HC, Zhang JL, Zhou YG, Xin YH. Sphingomonas psychrolutea sp. nov., a psychrotolerant bacterium isolated from glacier ice. Int J Syst Evol Microbiol 2015; 65:2955–2959 [View Article][PubMed]
    [Google Scholar]
  12. Feng GD, Yang SZ, Xiong X, Li HP, Zhu HH. Sphingomonas metalli sp. nov., isolated from an abandoned lead-zinc mine. Int J Syst Evol Microbiol 2016; 66:2046–2051 [View Article][PubMed]
    [Google Scholar]
  13. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991 pp. 125–175
    [Google Scholar]
  14. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  15. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  16. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  18. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  19. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  20. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  21. Nei M, Kumar S. Molecular evolution and phylogenetic. Oxford university press 200043–45
    [Google Scholar]
  22. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  23. Ten LN, Im WT, Kim MK, Kang MS, Lee ST. Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J Microbiol Methods 2004; 56:375–382 [View Article][PubMed]
    [Google Scholar]
  24. Tittsler RP, Sandholzer LA. The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 1936; 31:575–580[PubMed]
    [Google Scholar]
  25. Hucker GJ. A new modification and application of the gram stain. J Bacteriol 1921; 6:395–397[PubMed]
    [Google Scholar]
  26. Bernardet JF, Nakagawa Y, Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  27. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  28. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  29. Collins MD. Analysis of isoprenoid quinones. In Gottschalk G. (editor) Methods in Microbiology vol. 18 New York: Academic Press; 1985 pp. 329–366
    [Google Scholar]
  30. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the proteobacteria. Syst Appl Microbiol 1988; 11:1–8 [View Article]
    [Google Scholar]
  31. Siddiqi MZ, Choi GM, Kim SY, Choi KD, Im WT. Sphingomonas agri sp. nov., a bacterium isolated from soil. Int J Syst Evol Microbiol 2017; 67:4429–4434 [View Article][PubMed]
    [Google Scholar]
  32. Huy H, Jin L, Lee KC, Kim SG, Lee JS et al. Sphingomonas daechungensis sp. nov., isolated from sediment of a eutrophic reservoir. Int J Syst Evol Microbiol 2014; 64:1412–1418 [View Article][PubMed]
    [Google Scholar]
  33. Asker D, Beppu T, Ueda K. Sphingomonas jaspsi sp. nov., a novel carotenoid-producing bacterium isolated from Misasa, Tottori, Japan. Int J Syst Evol Microbiol 2007; 57:1435–1441 [View Article][PubMed]
    [Google Scholar]
  34. Lee JH, Kim DI, Kang JW, Seong CN. Sphingomonas lutea sp. nov., isolated from freshwater of an artificial reservoir. Int J Syst Evol Microbiol 2016; 66:5493–5499 [View Article][PubMed]
    [Google Scholar]
  35. Lee JH, Kim DI, Choe HN, Lee SD, Seong CN. Sphingomonas limnosediminicola sp. nov. and Sphingomonas palustris sp. nov., isolated from freshwater environments. Int J Syst Evol Microbiol 2017; 67:2834–2841 [View Article][PubMed]
    [Google Scholar]
  36. An DS, Liu QM, Lee HG, Jung MS, Kim SC et al. Sphingomonas ginsengisoli sp. nov. and Sphingomonas sediminicola sp. nov. Int J Syst Evol Microbiol 2013; 63:496–501 [View Article][PubMed]
    [Google Scholar]
  37. Kim MK, Schubert K, Im WT, Kim KH, Lee ST et al. Sphingomonas kaistensis sp. nov., a novel alphaproteobacterium containing pufLM genes. Int J Syst Evol Microbiol 2007; 57:1527–1534 [View Article][PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.003613
Loading
/content/journal/ijsem/10.1099/ijsem.0.003613
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error