1887

Abstract

Strain GCL-8 and GCL-11 were isolated from Guanyinshan, a sandy beach on the Xiamen coast. Cells of the two strains were Gram-stain-negative, catalase-positive, oxidase-positive, rod-shaped and non-motile. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strains GCL-8 and GCL-11 belonged to the genera and , with the highest sequence similarities to B108 (96.5%) and CGMCC 1.12174 (97.3%), respectively. The major fatty acids of strain GCL-8 were summed feature 8 (Cω7/ω6), Ccyclo ω8, C and C, while the major fatty acids of strain GCL-11 were iso-C G, iso-C and iso-C 3-OH. The G+C contents of the chromosomal DNA of strains GCL-8and GCL-11 were 64.1 mol% and 45.67 mol%, respectively. The respiratory quinones of strains GCL-8 and GCL-11 were Q-10 and MK-6, respectively. The polar lipids of strain GCL-8 were diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, one unidentified aminophospholipid, one unidentified aminolipid, three unidentified phospholipids and three unidentified polar lipids. The polar lipids of strain GCL-11were phosphatidylethanolamine, seven unidentified phospholipids and four unidentified polar lipids. The combined genotypic and phenotypic data show that strains GCL-8 and GCL-11 represent two novel species within genera and , for which the names sp. nov. and sp. nov. are proposed, with type strains GCL-8 (=MCCC 1A11651 = KCTC 52430) and GCL-11 (=MCCC 1A11649=KCTC 52432).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003595
2019-10-01
2019-10-21
Loading full text...

Full text loading...

References

  1. Labrenz M, Collins MD, Lawson PA, Tindall BJ, Schumann P et al. Roseovarius tolerans gen. nov., sp. nov., a budding bacterium with variable bacteriochlorophyll a production from hypersaline Ekho Lake. Int J Syst Bacteriol 1999;49:137–147 [CrossRef][PubMed]
    [Google Scholar]
  2. Park S, Kang CH, Park JM, Yoon JH. Aquimixticola soesokkakensis gen. nov., sp. nov., a novel lipolytic alphaproteobacterium isolated from the junction between the ocean and a freshwater spring, and reclassification of Roseovarius marinus as Pacificibacter marinus comb. nov. and emended description of the genus Pacificibacter. Antonie van Leeuwenhoek 2014;106:647–655 [CrossRef][PubMed]
    [Google Scholar]
  3. Park S, Park JM, Kang CH, Yoon JH. Aliiroseovarius pelagivivens gen. nov., sp. nov., isolated from seawater, and reclassification of three species of the genus Roseovarius as Aliiroseovarius crassostreae comb. nov., Aliiroseovarius halocynthiae comb. nov. and Aliiroseovarius sediminilitoris comb. nov. Int J Syst Evol Microbiol 2015;65:2646–2652 [CrossRef][PubMed]
    [Google Scholar]
  4. Bruns A, Rohde M, Berthe-Corti L. Muricauda ruestringensis gen. nov., sp. nov., a facultatively anaerobic, appendaged bacterium from German North Sea intertidal sediment. Int J Syst Evol Microbiol 2001;51:1997–2006 [CrossRef][PubMed]
    [Google Scholar]
  5. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018;68:1825–1829 [CrossRef][PubMed]
    [Google Scholar]
  6. Skerman VBD. A Guide to the Identification of the Genera of Bacteria, 2nd ed. Baltimore: Williams & Wilkins; 1967
    [Google Scholar]
  7. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1989
    [Google Scholar]
  8. Ausubel F, Brent R, Kingston R. Short Protocols in Molecular Biology: A compendium of methods from Current protocols in Molecular Biology, 3rd ed. New York: Wiley; 1995
    [Google Scholar]
  9. Liu C, Shao Z. Alcanivorax dieselolei sp. nov., a novel alkane-degrading bacterium isolated from sea water and deep-sea sediment. Int J Syst Evol Microbiol 2005;55:1181–1186 [CrossRef][PubMed]
    [Google Scholar]
  10. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  11. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  12. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  13. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  14. Rzhetsky A, Nei M. Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol 1992;35:367–375 [CrossRef][PubMed]
    [Google Scholar]
  15. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  16. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  17. Auch AF, Klenk HP, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2010;2:142–148 [CrossRef][PubMed]
    [Google Scholar]
  18. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010;2:117–134 [CrossRef][PubMed]
    [Google Scholar]
  19. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI; 1990
    [Google Scholar]
  20. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
  21. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  22. Kates M. Lipid extraction procedures. Techniques of Lipidology Amsterdam: Elsevier; 1986; pp.100–111
    [Google Scholar]
  23. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002;52:1049–1070 [CrossRef][PubMed]
    [Google Scholar]
  24. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  25. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  26. Wayne LG, Brenner DJ. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Can Entomol 1988;268:433–434
    [Google Scholar]
  27. Lai Q, Zhong H, Wang J, Yuan J, Sun F et al. Roseovarius indicus sp. nov., isolated from deep-sea water of the Indian Ocean. Int J Syst Evol Microbiol 2011;61:2040–2044 [CrossRef][PubMed]
    [Google Scholar]
  28. Park S, Ha MJ, Yoon SY, Jung YT, Yoon JH et al. Roseovarius aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2017;67:25–30 [CrossRef][PubMed]
    [Google Scholar]
  29. Wu YH, Yu PS, Zhou YD, Xu L, Wang CS et al. Muricauda antarctica sp. nov., a marine member of the Flavobacteriaceae isolated from Antarctic seawater. Int J Syst Evol Microbiol 2013;63:3451–3456 [CrossRef][PubMed]
    [Google Scholar]
  30. Kim JM, Jin HM, Jeon CO. Muricauda taeanensis sp. nov., isolated from a marine tidal flat. Int J Syst Evol Microbiol 2013;63:2672–2677 [CrossRef][PubMed]
    [Google Scholar]
  31. Lee SY, Park S, Oh TK, Yoon JH. Muricauda beolgyonensis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2012;62:1134–1139 [CrossRef][PubMed]
    [Google Scholar]
  32. Yoon JH, Kang SJ, Jung YT, Oh TK. Muricauda lutimaris sp. nov., isolated from a tidal flat of the Yellow Sea. Int J Syst Evol Microbiol 2008;58:1603–1607 [CrossRef][PubMed]
    [Google Scholar]
  33. Jung YT, Park S, Yoon JH. Roseovarius litoreus sp. nov., isolated from seawater of southern coast of Korean peninsula. Antonie van Leeuwenhoek 2012;102:141–148 [CrossRef][PubMed]
    [Google Scholar]
  34. Oh YS, Lim HJ, Cha IT, Im WT, Yoo JS et al. Roseovarius halotolerans sp. nov., isolated from deep seawater. Int J Syst Evol Microbiol 2009;59:2718–2723 [CrossRef][PubMed]
    [Google Scholar]
  35. Jia X, Kim HR, Jia B, Jeon HH, Baek K et al. Roseovarius confluentis sp. nov., isolated from estuary sediment. Int J Syst Evol Microbiol 2017;67:346–351 [CrossRef][PubMed]
    [Google Scholar]
  36. Wang B, Tan T, Shao Z. Roseovarius pacificus sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2009;59:1116–1121 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003595
Loading
/content/journal/ijsem/10.1099/ijsem.0.003595
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error