1887

Abstract

Strain ZH6 is a Gram-stain-negative, rod-shaped, aerobic bacterium isolated from manganese mine soil. Strain ZH6 had highest 16S rRNA gene sequence similarities to YX-36 (96.9 %) and NH7-4 (96.8 %). The genome size of strain ZH6 was 4.61 Mb with a DNA G+C content of 44.0 mol%. The average nucleotide identity and digital DNA–DNA hybridization values between strain ZH6 and DSM 26809 were 70.6 and 19.2 %, respectively. Strain ZH6 had menaquinone-7 as a major quinone and main cellular fatty acids of iso-C, iso-C 3-OH and summed feature 3 (Cω7 and/or Cω6). The polar lipids of strain ZH6 were a phosphatidylethanolamine, an unidentified glycolipid, an unidentified phospholipid, three unidentified aminophospholipids and four unidentified lipids. Based on the phenotypic, chemotaxonomic and phylogenetic results, strain ZH6 represents a novel species of the genus , for which the name sp. nov., is proposed. The type strain is ZH6 (=CCTCC AB 2018373=KCTC 72075).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003592
2019-10-01
2019-10-21
Loading full text...

Full text loading...

References

  1. Pankratov TA, Tindall BJ, Liesack W, Dedysh SN. Mucilaginibacter paludis gen. nov., sp. nov. and Mucilaginibacter gracilis sp. nov., pectin-, xylan- and laminarin-degrading members of the family Sphingobacteriaceae from acidic Sphagnum peat bog. Int J Syst Evol Microbiol 2007;57:2349–2354 [CrossRef][PubMed]
    [Google Scholar]
  2. Chen WM, Hsieh TY, Sheu SY. Mucilaginibacter amnicola sp. nov., isolated from a freshwater creek. Int J Syst Evol Microbiol 2018;68:394–401 [CrossRef][PubMed]
    [Google Scholar]
  3. Lee SY, Siddiqi MZ, Kim SY, Yu HS, Lee JH et al. Mucilaginibacter panaciglaebae sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 2018;68:149–154 [CrossRef][PubMed]
    [Google Scholar]
  4. Lee KC, Kim KK, Eom MK, Kim JS, Kim DS et al. Mucilaginibacter craterilacus sp. nov., isolated from sediment soil of a crater lake. Int J Syst Evol Microbiol 2017;67:2891–2896 [CrossRef][PubMed]
    [Google Scholar]
  5. Aydogan EL, Busse HJ, Moser G, Müller C, Kämpfer P et al. Proposal of Mucilaginibacter galii sp. nov. isolated from leaves of Galium album. Int J Syst Evol Microbiol 2017;67:1318–1326 [CrossRef][PubMed]
    [Google Scholar]
  6. Deng Y, Shen L, Xu B, Liu Y, Gu Z et al. Mucilaginibacter psychrotolerans sp. nov., isolated from peatlands. Int J Syst Evol Microbiol 2017;67:767–771 [CrossRef][PubMed]
    [Google Scholar]
  7. Wei JC, Sun LN, Yuan ZX, Hou XT, Yang ED et al. Mucilaginibacter rubeus sp. nov., isolated from rhizosphere soil. Int J Syst Evol Microbiol 2017;67:3099–3104 [CrossRef][PubMed]
    [Google Scholar]
  8. Zheng R, Zhao Y, Wang L, Chang X, Zhang Y et al. Mucilaginibacter antarcticus sp. nov., isolated from tundra soil. Int J Syst Evol Microbiol 2016;66:5140–5144 [CrossRef][PubMed]
    [Google Scholar]
  9. Kim DU, Lee H, Kim H, Kim SG, Park SY et al. Mucilaginibacter carri sp. nov., isolated from a car air conditioning system. Int J Syst Evol Microbiol 2016;66:1754–1759 [CrossRef][PubMed]
    [Google Scholar]
  10. Sheu SY, Chen YL, Chen WM. Mucilaginibacter fluminis sp. nov., isolated from a freshwater river. Int J Syst Evol Microbiol 2016;66:4567–4574 [CrossRef][PubMed]
    [Google Scholar]
  11. Tang J, Huang J, Qiao Z, Wang R, Wang G. Mucilaginibacter pedocola sp. nov., isolated from a heavy-metal-contaminated paddy field. Int J Syst Evol Microbiol 2016;66:4033–4038 [CrossRef][PubMed]
    [Google Scholar]
  12. Aydogan EL, Busse HJ, Moser G, Müller C, Kämpfer P et al. Proposal of Mucilaginibacter phyllosphaerae sp. nov. isolated from the phyllosphere of Galium album. Int J Syst Evol Microbiol 2016;66:4138–4147 [CrossRef][PubMed]
    [Google Scholar]
  13. Zhao Y, Lee HG, Kim SK, Yu H, Jin F et al. Mucilaginibacter pocheonensis sp. nov., with ginsenoside-converting activity, isolated from soil of a ginseng-cultivating field. Int J Syst Evol Microbiol 2016;66:2862–2868 [CrossRef][PubMed]
    [Google Scholar]
  14. Lee JH, Kim MS, Kang JW, Baik KS, Seong CN. Mucilaginibacter puniceus sp. nov., isolated from wetland freshwater. Int J Syst Evol Microbiol 2016;66:4549–4554 [CrossRef][PubMed]
    [Google Scholar]
  15. Chen WM, Chen YL, Sheu SY. Mucilaginibacter roseus sp. nov., isolated from a freshwater river. Int J Syst Evol Microbiol 2016;66:1112–1118 [CrossRef][PubMed]
    [Google Scholar]
  16. Jing YT, Wang P, Zhang H, Dong WL, Jing YJ et al. Mucilaginibacter yixingensis sp. nov., isolated from vegetable soil. Int J Syst Evol Microbiol 2016;66:1779–1784 [CrossRef][PubMed]
    [Google Scholar]
  17. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018;68:1825–1829 [CrossRef][PubMed]
    [Google Scholar]
  18. Fan H, Su C, Wang Y, Yao J, Zhao K et al. Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. J Appl Microbiol 2008;105:529–539 [CrossRef][PubMed]
    [Google Scholar]
  19. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  20. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  21. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  23. Thompson EA. The method of minimum evolution. Ann Hum Genet 1973;36:333–340 [CrossRef][PubMed]
    [Google Scholar]
  24. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  25. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  26. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  27. Dussault HP. An improved technique for staining red halophilic bacteria. J Bacteriol 1955;70:484–485[PubMed]
    [Google Scholar]
  28. Tarrand JJ, Gröschel DH. Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 1982;16:772–774[PubMed]
    [Google Scholar]
  29. Vila J, Gené A, García C, Vidal C, Barranco M et al. [Rapid method for identifying Escherichia coli and species of the Proteeae tribe in urine]. Med Clin 1992;99:601–604
    [Google Scholar]
  30. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria London: Cambridge University Press; 1965
    [Google Scholar]
  31. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  32. Leifson E. Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 1963;85:1183–1184[PubMed]
    [Google Scholar]
  33. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark: MIDI Inc; 1990
    [Google Scholar]
  34. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  35. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  36. Xie CH, Yokota A. Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 2003;49:345–349 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003592
Loading
/content/journal/ijsem/10.1099/ijsem.0.003592
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error