1887

Abstract

The taxonomic position of ‘’ LMG 30035, a semduramicin-producing mutant of strain ATCC 53666, which was isolated from a soil sample collected in Yamae Village, Kamamoto, Japan, was clarified in the present study using a polyphasic approach. This Gram-positive, aerobic actinomycete formed a well-developed, extensively branched, non-fragmenting substrate and aerial mycelia which differentiated into single, smooth-appearing spores. Based on analysis of nearly complete 16S rRNA gene sequence, strain LMG 30035 was found to be closely related to the type strains of ATCC 49459 (98.88 %) and JCM 7474 (98.82 %) (pairwise similarity values in parentheses). Digital DNA–DNA hybridisation experiments revealed unambiguously that strain LMG 30035 represents a novel species (OrthoANIu values less than 83.1 %; dDDH values less than 27.2 % with type strains of validly named species). Analysis of the cell wall revealed the presence of -diaminopimelic acid in the peptidoglycan. The whole-cell sugars were glucose, madurose, galactose, ribose and rhamnose. The major polar lipids included phosphatidylinositol and diphosphatidylglycerol. The predominant menaquinones were MK-9(H), MK-9(H), MK-9(H) and MK-9(H). The major fatty acids were C, 10-methyl C, C and C. The DNA G+C content of its genome was 72.5 mol%. In summary, these characteristics distinguish strain LMG 30035 from validly named species of the genus , and therefore, we propose to classify this strain formally as the novel species sp. nov. with LMG 30035 (=CECT 9808,=ATCC 53664) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003591
2019-10-01
2019-10-21
Loading full text...

Full text loading...

References

  1. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970;20:435–443 [CrossRef]
    [Google Scholar]
  2. Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 1997;47:479–491 [CrossRef]
    [Google Scholar]
  3. Lahoum A, Bouras N, Verheecke C, Mathieu F, Schumann P et al. Actinomadura adrarensis sp. nov., an actinobacterium isolated from Saharan soil. Int J Syst Evol Microbiol 2016;66:2724–2729 [CrossRef][PubMed]
    [Google Scholar]
  4. Ay H, Nouioui I, del Carmen Montero-Calasanz M, Carro L, Klenk HP et al. Actinomadura alkaliterrae sp. nov., isolated from an alkaline soil. Antonie van Leeuwenhoek 2017;110:787–794 [CrossRef][PubMed]
    [Google Scholar]
  5. Jiao JY, Liu L, Zhou EM, Wei DQ, Ming H et al. Actinomadura amylolytica sp. nov. and Actinomadura cellulosilytica sp. nov., isolated from geothermally heated soil. Antonie van Leeuwenhoek 2015;108:75–83 [CrossRef][PubMed]
    [Google Scholar]
  6. Mertz FP, Yao RC. Actinomadura fibrosa sp. nov. isolated from soil. Int J Syst Bacteriol 1990;40:28–33 [CrossRef][PubMed]
    [Google Scholar]
  7. Rachniyom H, Matsumoto A, Inahashi Y, Take A, Takahashi Y et al. Actinomadura barringtoniae sp. nov., an endophytic actinomycete isolated from the roots of Barringtonia acutangula (L.) Gaertn. Int J Syst Evol Microbiol 2018;68:1584–1590 [CrossRef][PubMed]
    [Google Scholar]
  8. Qin S, Zhao GZ, Li J, Zhu WY, Xu LH et al. Actinomadura flavalba sp. nov., an endophytic actinomycete isolated from leaves of Maytenus austroyunnanensis. Int J Syst Evol Microbiol 2009;59:2453–2457 [CrossRef][PubMed]
    [Google Scholar]
  9. Rachniyom H, Matsumoto A, Indananda C, Duangmal K, Takahashi Y et al. Actinomadura syzygii sp. nov., an endophytic actinomycete isolated from the roots of a jambolan plum tree (Syzygium cumini L. Skeels). Int J Syst Evol Microbiol 2015;65:1946–1949 [CrossRef][PubMed]
    [Google Scholar]
  10. Promnuan Y, Kudo T, Ohkuma M, Chantawannakul P. Actinomadura apis sp. nov., isolated from a honey bee (Apis mellifera) hive, and the reclassification of Actinomadura cremea subsp. rifamycini Gauze et al. 1987 as Actinomadura rifamycini (Gauze et al. 1987) sp. nov., comb. nov. Int J Syst Evol Microbiol 2011;61:2271–2277 [CrossRef][PubMed]
    [Google Scholar]
  11. Ara I, Matsumoto A, Abdul Bakir M, Kudo T, Omura S et al. Actinomadura maheshkhaliensis sp. nov., a novel actinomycete isolated from mangrove rhizosphere soil of Maheshkhali, Bangladesh. J Gen Appl Microbiol 2008;54:335–342 [CrossRef][PubMed]
    [Google Scholar]
  12. He J, Xu Y, Sahu MK, Tian XP, Nie GX et al. Actinomadura sediminis sp. nov., a marine actinomycete isolated from mangrove sediment. Int J Syst Evol Microbiol 2012;62:1110–1116 [CrossRef][PubMed]
    [Google Scholar]
  13. Hanafy A, Ito J, Iida S, Kang Y, Kogure T et al. Majority of Actinomadura clinical isolates from sputa or bronchoalveolar lavage fluid in Japan belongs to the cluster of Actinomadura cremea and Actinomadura nitritigenes, and the description of Actinomadura chibensis sp. nov. Mycopathologia 2006;162:281–287 [CrossRef][PubMed]
    [Google Scholar]
  14. Yassin AF, Spröer C, Siering C, Klenk HP. Actinomadura sputi sp. nov., isolated from the sputum of a patient with pulmonary infection. Int J Syst Evol Microbiol 2010;60:149–153 [CrossRef][PubMed]
    [Google Scholar]
  15. Kroppenstedt RM, Stackebrandt E, Goodfellow M. Taxonomic revision of the Actinomycete Genera Actinomadura and Microtetraspora. Syst Appl Microbiol 1990;13:148–160 [CrossRef]
    [Google Scholar]
  16. Cao C, Xu T, Liu J, Cai X, Sun Y et al. Actinomadura deserti sp. nov., isolated from desert soil. Int J Syst Evol Microbiol 2018;68:2930–2935 [CrossRef][PubMed]
    [Google Scholar]
  17. Lu Z, Wang L, Zhang Y, Shi Y, Liu Z et al. Actinomadura catellatispora sp. nov. and Actinomadura glauciflava sp. nov., from a sewage ditch and soil in southern China. Int J Syst Evol Microbiol 2003;53:137–142 [CrossRef][PubMed]
    [Google Scholar]
  18. Zhao J, Guo L, Sun P, Han C, Bai L et al. Actinomadura jiaoheensis sp. nov. and Actinomadura sporangiiformans sp. nov., two novel actinomycetes isolated from muddy soil and emended description of the genus Actinomadura. Antonie van Leeuwenhoek 2015;108:1331–1339 [CrossRef][PubMed]
    [Google Scholar]
  19. Abagana AY, Sun P, Liu C, Cao T, Zheng W et al. Actinomadura gamaensis sp. nov., a novel actinomycete isolated from soil in Gama, Chad. Antonie van Leeuwenhoek 2016;109:833–839 [CrossRef][PubMed]
    [Google Scholar]
  20. Songsumanus A, Kudo T, Ohkuma M, Phongsopitanun W, Tanasupawat S. Actinomadura montaniterrae sp. nov., isolated from mountain soil. Int J Syst Evol Microbiol 2016;66:3310–3316 [CrossRef][PubMed]
    [Google Scholar]
  21. Lahoum A, Aouiche A, Bouras N, Verheecke C, Klenk HP et al. Antifungal activity of a Saharan strain of Actinomadura sp. ACD1 against toxigenic fungi and other pathogenic microorganisms. J Mycol Med 2016;26:193–200 [CrossRef][PubMed]
    [Google Scholar]
  22. Dirlam JP, Bordner J, Chang SP, Grizzuti A, Nelson TH et al. The isolation and structure of CP-120,509, a new polyether antibiotic related to semduramicin and produced by mutants of Actinomadura roseorufa. J Antibiot 1992;45:1544–1548 [CrossRef][PubMed]
    [Google Scholar]
  23. Tynan EJ, Nelson TH, Davies RA, Wernau WC. The production of semduramicin by direct fermentation. J Antibiot 1992;45:813–815 [CrossRef][PubMed]
    [Google Scholar]
  24. Tynan EJ. United States patent - Actinomadura roseorufa for making UK-61,689. Patent 1997;5:563
    [Google Scholar]
  25. Snauwaert I, Papalexandratou Z, De Vuyst L, Vandamme P. Characterization of strains of Weissella fabalis sp. nov. and Fructobacillus tropaeoli from spontaneous cocoa bean fermentations. Int J Syst Evol Microbiol 2013;63:1709–1716 [CrossRef][PubMed]
    [Google Scholar]
  26. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  27. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28:1823–1829 [CrossRef][PubMed]
    [Google Scholar]
  28. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  29. Gevers D, Huys G, Swings J. Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol Lett 2001;205:31–36 [CrossRef][PubMed]
    [Google Scholar]
  30. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014;30:2114–2120 [CrossRef][PubMed]
    [Google Scholar]
  31. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  32. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013;29:1072–1075 [CrossRef][PubMed]
    [Google Scholar]
  33. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  34. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  35. Ankenbrand MJ, Keller A. bcgTree: automatized phylogenetic tree building from bacterial core genomes. Genome 2016;59:783–791 [CrossRef][PubMed]
    [Google Scholar]
  36. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol 2018;9:1–119 [CrossRef][PubMed]
    [Google Scholar]
  37. MacFaddin JF. Biochemical Tests for Identification of Medical Bacteria, 3rd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2000
    [Google Scholar]
  38. Jones KL. Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 1949;57:141–145[PubMed]
    [Google Scholar]
  39. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16:313–340 [CrossRef]
    [Google Scholar]
  40. Kelly K. Inter-Society Color Council - National Bureau of Standards Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  41. Lee DW, Lee SD. Actinomadura scrupuli sp. nov., isolated from rock. Int J Syst Evol Microbiol 2010;60:2647–2651 [CrossRef][PubMed]
    [Google Scholar]
  42. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005;55:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
  43. Gordon RE, Mihm JM. A comparative study of some strains received as Nocardiae. J Bacteriol 1956;73:15–27
    [Google Scholar]
  44. Becker B, Lechevalier MP, Gordon RE, Lechevalier HA. Rapid differentiation between nocardia and streptomyces by paper chromatography of whole-cell hydrolysates. Appl Microbiol 1964;12:421–423[PubMed]
    [Google Scholar]
  45. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974;28:226–231[PubMed]
    [Google Scholar]
  46. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 2004;101:11030–11035 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003591
Loading
/content/journal/ijsem/10.1099/ijsem.0.003591
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error