1887

Abstract

A novel irregularly shaped and slightly curved rod bacterial strain, GLDI4/2, showing activity of fructose 6-phosphate phosphoketolase was isolated from a faecal sample of an adult gelada baboon (). Phylogenetic analyses based on 16S rRNA genes as well as multilocus sequences (representing , and genes) and the core genome revealed that GLDI4/2 exhibited phylogenetic relatedness to DSM 21503 and to DSM 24762. Comparative analysis of 16S rRNA gene sequences confirmed the phylogenetic results showing the highest gene sequence identity with strain DSM 21503 (96.0 %). Activities of α- and β-gluco(galacto)sidases were detected in strain GLDI4/2, which is characteristic for almost all members of the family . Compared to other species its DNA G+C content (43.8 mol%) was very low. Phylogenetic studies and the evaluation of phenotypic characteristics, including the results of biochemical, physiological and chemotaxonomic analyses, confirmed the novel species status for strain GLDI4/2, for which the name sp. nov. is proposed. The type strain is GLDI4/2 (=DSM 106019=JCM 32430).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003584
2019-08-08
2019-08-18
Loading full text...

Full text loading...

References

  1. Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 1997;47:479–491 [CrossRef]
    [Google Scholar]
  2. Orla-Jensen. La classification des bactéries lactiques. Lait 1924;4:468–474 [CrossRef]
    [Google Scholar]
  3. Greenwood JR, Pickett MJ. Transfer of Haemophilus vaginalis Gardner and Dukes to a New Genus, Gardnerella: G. vaginalis (Gardner and Dukes) comb. nov. Int J Syst Bacteriol 1980;30:170–178 [CrossRef]
    [Google Scholar]
  4. Mattarelli P, Biavati B, Holzapfel WH, Wood BJ. The Bifidobacteria and Related Organisms: Biology, Taxonomy, Applications, 1st ed. Elsevier Science Publishing Co Inc; 2017
    [Google Scholar]
  5. Simpson PJ, Ross RP, Fitzgerald GF, Stanton C. Bifidobacterium psychraerophilum sp. nov. and Aeriscardovia aeriphila gen. nov., sp. nov., isolated from a porcine caecum. Int J Syst Evol Microbiol 2004;54:401–406 [CrossRef][PubMed]
    [Google Scholar]
  6. Huys G, Vancanneyt M, D'Haene K, Falsen E, Wauters G et al. Alloscardovia omnicolens gen. nov., sp. nov., from human clinical samples. Int J Syst Evol Microbiol 2007;57:1442–1446 [CrossRef][PubMed]
    [Google Scholar]
  7. Killer J, Rocková Š, Vlková E, Rada V, Havlík J et al. Alloscardovia macacae sp. nov., isolated from the milk of a macaque (Macaca mulatta), emended description of the genus Alloscardovia and proposal of Alloscardovia criceti comb. nov. Int J Syst Evol Microbiol 2013;63:4439–4446 [CrossRef][PubMed]
    [Google Scholar]
  8. Sechovcová H, Killer J, Pechar R, Geigerová M, Švejstil R et al. Alloscardovia venturai sp. nov., a fructose 6-phosphate phosphoketolase-positive species isolated from the oral cavity of a guinea-pig (Cavia aperea f. porcellus). Int J Syst Evol Microbiol 2017;67:2842–2847 [CrossRef][PubMed]
    [Google Scholar]
  9. Killer J, Kopečný J, Mrázek J, Havlík J, Koppová I et al. Bombiscardovia coagulans gen. nov., sp. nov., a new member of the family Bifidobacteriaceae isolated from the digestive tract of bumblebees. Syst Appl Microbiol 2010;33:359–366 [CrossRef][PubMed]
    [Google Scholar]
  10. García-Aljaro C, Ballesté E, Rosselló-Móra R, Cifuentes A, Richter M et al. Neoscardovia arbecensis gen. nov., sp. nov., isolated from porcine slurries. Syst Appl Microbiol 2012;35:374–379 [CrossRef][PubMed]
    [Google Scholar]
  11. Jian W, Dong X. Transfer of Bifidobacterium inopinatum and Bifidobacterium denticolens to Scardovia inopinata gen. nov., comb. nov., and Parascardovia denticolens gen. nov., comb. nov., respectively. Int J Syst Evol Microbiol 2002;52:809–812 [CrossRef][PubMed]
    [Google Scholar]
  12. Killer J, Mrázek J, Bunešová V, Havlík J, Koppová I et al. Pseudoscardovia suis gen. nov., sp. nov., a new member of the family Bifidobacteriaceae isolated from the digestive tract of wild pigs (Sus scrofa). Syst Appl Microbiol 2013;36:11–16 [CrossRef][PubMed]
    [Google Scholar]
  13. Killer J, Havlik J, Bunesova V, Vlkova E, Benada O. Pseudoscardovia radai sp. nov., another representative of a new genus within the family Bifidobacteriaceae isolated from the digestive tract of a wild pig (Sus scrofa scrofa). Int J Syst Evol Microbiol
    [Google Scholar]
  14. Downes J, Mantzourani M, Beighton D, Hooper S, Wilson MJ et al. Scardovia wiggsiae sp. nov., isolated from the human oral cavity and clinical material, and emended descriptions of the genus Scardovia and Scardovia inopinata. Int J Syst Evol Microbiol 2011;61:25–29 [CrossRef][PubMed]
    [Google Scholar]
  15. Pechar R, Killer J, Švejstil R, Salmonová H, Geigerová M et al. Galliscardovia ingluviei gen. nov., sp. nov., a thermophilic bacterium of the family Bifidobacteriaceae isolated from the crop of a laying hen (Gallus gallus f. domestica). Int J Syst Evol Microbiol 2017;67:2403–2411 [CrossRef][PubMed]
    [Google Scholar]
  16. [Google Scholar]
  17. Fashing PJ, Nguyen N, Venkataraman VV, Kerby JT. Gelada feeding ecology in an intact ecosystem at Guassa, Ethiopia: Variability over time and implications for theropith and hominin dietary evolution. Am J Phys Anthropol 2014;155:1–16 [CrossRef][PubMed]
    [Google Scholar]
  18. Woldegeorgis C, Bekele A. Diet and feeding behaviour of geladas (Theropithecus gelada) at the gich area of the simien mountains national park, Ethiopia. 2015;https://www.longdom.org/articles/diet-and-feeding-behaviour-of-geladas-theropithecus-gelada-at-the-gich-area-of-the-simien-mountains-national-park-ethiop.pdf (accessed 27 February 2019)
  19. Dunbar RIM, Bose U. Adaptation to grass-eating in gelada baboons. Primates 1991;32:1–7 [CrossRef]
    [Google Scholar]
  20. Caton IM, Hill DM, Hume D, Crook GA. The digestive strategy of the common marmoset. Callithrix jucchus 1996;114:1–8
    [Google Scholar]
  21. Jolly CJ. The classification and natural history of Theropithecus (Simopithecus) (Andrews, 1916), baboons of the African Plio-Pleistocene. Bull Br Mus Nat Hist (Geol) 1972; London: BM(NH)
    [Google Scholar]
  22. Mau M, Südekum KH, Johann A, Sliwa A, Kaiser TM. Saliva of the graminivorous Theropithecus gelada lacks proline-rich proteins and tannin-binding capacity. Am J Primatol 2009;71:663–669 [CrossRef][PubMed]
    [Google Scholar]
  23. Scardovi V. Genus Bifidobacterium. In Sneath PHA, Mair MES NS JGH. (editors) Bergey’s Manual of Systematic Bacteriology Baltimore: 1986; pp.1418–1434
    [Google Scholar]
  24. Michelini S, Modesto M, Filippini G, Spiezio C, Sandri C et al. Bifidobacterium aerophilum sp. nov., Bifidobacterium avesanii sp. nov. and Bifidobacterium ramosum sp. nov.: Three novel taxa from the faeces of cotton-top tamarin (Saguinus oedipus L.). Syst Appl Microbiol 2016;39:229–236 [CrossRef][PubMed]
    [Google Scholar]
  25. Modesto M, Michelini S, Oki K, Biavati B, Watanabe K et al. Bifidobacterium catulorum sp. nov., a novel taxon from the faeces of the baby common marmoset (Callithrix jacchus). Int J Syst Evol Microbiol 2018;68:575–581 [CrossRef][PubMed]
    [Google Scholar]
  26. Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T et al. PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res 2014;42:D581–D591 [CrossRef][PubMed]
    [Google Scholar]
  27. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014;42:D206–D214 [CrossRef][PubMed]
    [Google Scholar]
  28. Delétoile A, Passet V, Aires J, Chambaud I, Butel MJ et al. Species delineation and clonal diversity in four Bifidobacterium species as revealed by multilocus sequencing. Res Microbiol 2010;161:82–90 [CrossRef][PubMed]
    [Google Scholar]
  29. Berthoud H, Chavagnat F, Haueter M, Casey MG. Comparison of partial gene sequences encoding a phosphoketolase for the identification of bifidobacteria. LWT - Food Science and Technology 2005;38:101–105 [CrossRef]
    [Google Scholar]
  30. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013;30:772–780 [CrossRef][PubMed]
    [Google Scholar]
  31. Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009;25:1972–1973 [CrossRef][PubMed]
    [Google Scholar]
  32. Talavera G, Castresana J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 2007;56:564–577 [CrossRef][PubMed]
    [Google Scholar]
  33. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  34. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30:2068–2069 [CrossRef][PubMed]
    [Google Scholar]
  35. Contreras-Moreira B, Vinuesa P. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol 2013;79:7696–7701 [CrossRef][PubMed]
    [Google Scholar]
  36. Li L, Stoeckert CJ, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 2003;13:2178–2189 [CrossRef][PubMed]
    [Google Scholar]
  37. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–1313 [CrossRef][PubMed]
    [Google Scholar]
  38. Modesto M, Puglisi E, Bonetti A, Michelini S, Spiezio C et al. Bifidobacterium primatium sp. nov., Bifidobacterium scaligerum sp. nov., Bifidobacterium felsineum sp. nov. and Bifidobacterium simiarum sp. nov.: Four novel taxa isolated from the faeces of the cotton top tamarin (Saguinus oedipus) and the emperor tamarin (Saguinus imperator). Syst Appl Microbiol 2018;41:593–603 [CrossRef][PubMed]
    [Google Scholar]
  39. Modesto M, Michelini S, Stefanini I, Ferrara A, Tacconi S et al. Bifidobacterium aesculapii sp. nov., from the faeces of the baby common marmoset (Callithrix jacchus). Int J Syst Evol Microbiol 2014;64:2819–2827 [CrossRef][PubMed]
    [Google Scholar]
  40. Orban JI, Patterson JA. Modification of the phosphoketolase assay for rapid identification of bifidobacteria. J Microbiol Methods 2000;40:221–224 [CrossRef][PubMed]
    [Google Scholar]
  41. Mattarelli P, Holzapfel W, Franz CM, Endo A, Felis GE et al. Recommended minimal standards for description of new taxa of the genera Bifidobacterium, Lactobacillus and related genera. Int J Syst Evol Microbiol 2014;64:1434–1451 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003584
Loading
/content/journal/ijsem/10.1099/ijsem.0.003584
Loading

Data & Media loading...

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error