1887

Abstract

and , both Gram-stain-positive and endospore-forming bacilli, have been considered to be a single species. However, a preliminary computation of their average nucleotide identity (ANI) values suggested that these species are not synonyms. Given this, the taxonomic attributions of these species were evaluated through genomic and phylogenomic approaches. Although the identity of 16S rRNA gene sequences of DSM 1735 and ATCC 35681 are above the circumscription species threshold, genomic metrics analyses indicate otherwise. ANI, gANI and OrthoANI values computed from their genome sequences were around 92 %, below the species limits. Digital DNA–DNA hybridization and MUMi estimations also corroborated these observations. In fact, in all metrics, JH29 seemed to be more similar to ATCC 35681 than DSM 1735. Phylogenetic analyses based on concatenated core-proteome and concatenated , , and genes confirmed that is the closest species to A review of the phenotypic profiles from these three species revealed that their biochemical repertoires are very similar, although ATCC 35681 can be differentiated from DSM1735 in 13 among more than 90 phenotypic traits. Considering phylogenetic and genomic analyses, should be considered as an independent species, and not as a later synonym of .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003572
2019-09-01
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/9/2870.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003572&mimeType=html&fmt=ahah

References

  1. Grady EN, Macdonald J, Liu L, Richman A, Yuan ZC. Current knowledge and perspectives of Paenibacillus: a review. Microb Cell Fact 2016; 15:203 [View Article][PubMed]
    [Google Scholar]
  2. Montes MJ, Mercadé E, Bozal N, Guinea J. Paenibacillus antarcticus sp. nov., a novel psychrotolerant organism from the Antarctic environment. Int J Syst Evol Microbiol 2004; 54:1521–1526 [View Article][PubMed]
    [Google Scholar]
  3. Uetanabaro AP, Wahrenburg C, Hunger W, Pukall R, Spröer C et al. Paenibacillus agarexedens sp. nov., nom. rev., and Paenibacillus agaridevorans sp. nov. Int J Syst Evol Microbiol 2003; 53:1051–1057 [View Article][PubMed]
    [Google Scholar]
  4. Validov S, Kamilova F, Qi S, Stephan D, Wang JJ et al. Selection of bacteria able to control Fusarium oxysporum f. sp. radicis-lycopersici in stonewool substrate. J Appl Microbiol 2007; 102:461–471 [View Article][PubMed]
    [Google Scholar]
  5. Keller A, Brandel A, Becker MC, Balles R, Abdelmohsen UR et al. Wild bees and their nests host Paenibacillus bacteria with functional potential of avail. Microbiome 2018; 6:229–238 [View Article][PubMed]
    [Google Scholar]
  6. de Souza R, Meyer J, Schoenfeld R, da Costa PB, Passaglia LMP. Characterization of plant growth-promoting bacteria associated with rice cropped in iron-stressed soils. Ann Microbiol 2015
    [Google Scholar]
  7. Fürnkranz M, Adam E, Müller H, Grube M, Huss H et al. Promotion of growth, health and stress tolerance of Styrian oil pumpkins by bacterial endophytes. Eur J Plant Pathol 2012
    [Google Scholar]
  8. Ker K, Seguin P, Driscoll BT, Fyles JW, Smith DL. Switchgrass establishment and seeding year production can be improved by inoculation with rhizosphere endophytes. Biomass and Bioenergy 2014
    [Google Scholar]
  9. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  10. Vandamme P, Pot B, Gillis M, de Vos P, Kersters K et al. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 1996; 60:407–438[PubMed]
    [Google Scholar]
  11. Gürtler V, Mayall BC, Seviour R. Can whole genome analysis refine the taxonomy of the genus Rhodococcus?. FEMS Microbiol Rev 2004; 28:377–403 [View Article][PubMed]
    [Google Scholar]
  12. Halim MA, Rahman AY, Sim KS, Yam HC, Rahim AA et al. Genome sequence of a gram-positive diazotroph, Paenibacillus durus type strain ATCC 35681. Genome Announc 2016; 4: [View Article][PubMed]
    [Google Scholar]
  13. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J et al. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 1994; 44:812–826 [View Article][PubMed]
    [Google Scholar]
  14. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus . Antonie Van Leeuwenhoek 1993; 64:253–260[PubMed]
    [Google Scholar]
  15. Sant'Anna FH, Ambrosini A, de Souza R, de Carvalho Fernandes G, Bach E et al. Reclassification of Paenibacillus riograndensis as a genomovar of Paenibacillus sonchi: genome-based metrics improve bacterial taxonomic classification. Front Microbiol 2017; 8:1849 [View Article][PubMed]
    [Google Scholar]
  16. Kim KK, Lee KC, Lee JS. Reclassification of Paenibacillus ginsengisoli as a later heterotypic synonym of Paenibacillus anaericanus . Int J Syst Evol Microbiol 2011; 61:2101–2106 [View Article][PubMed]
    [Google Scholar]
  17. Sant’Anna FH, Ambrosini A, Guella FL, Porto RZ, Passaglia LMP. Genome-based reclassification of Paenibacillus dauci as a later heterotypic synonym of Paenibacillus shenyangensis . Int J Syst Evol Microbiol 2019; 69: [View Article][PubMed]
    [Google Scholar]
  18. Smith LD, Cato EP. Clostridium durum sp. nov., the predominant organism in a sediment core from the Black Sea. Can J Microbiol 1974
    [Google Scholar]
  19. Seldin L, van Elsas JD, Penido EGC. Bacillus azotofixans sp. nov., a nitrogen-fixing species from brazilian soils and grass roots. Int J Syst Bacteriol 1984
    [Google Scholar]
  20. Heyndrickx M, Vandemeulebroecke K, Scheldeman P, Kersters K, De Vos P et al. A polyphasic reassessment of the genus Paenibacillus, reclassification of Bacillus lautus (Nakamura 1984) as Paenibacillus lautus comb. nov. and of Bacillus peoriae (Montefusco et al. 1993) as Paenibacillus peoriae comb. nov., and emended descriptions of P. lautus and of P. peoriae. Int J Syst Bacteriol 1996; 46:988–1003 [View Article]
    [Google Scholar]
  21. Rosado AS, van Elsas JD, Seldin L. Reclassification of Paenibacillus durum (formerly Clostridium durum Smith and Cato 1974) Collins et al. 1994 as a member of the species P. azotofixans (formerly Bacillus azotofixans Seldin et al. 1984) Ash et al. 1994. Int J Syst Bacteriol 1997; 47:569–572 [View Article][PubMed]
    [Google Scholar]
  22. International Committee on Systematics of Prokaryotes JC Paenibacillus durus (Collins et al. 1994, formerly Clostridium durum Smith and Cato 1974) has priority over Paenibacillus azotofixans (Seldin et al. 1984). Opinion 73. Int J Syst Evol Microbiol 2003; 53:931 [View Article][PubMed]
    [Google Scholar]
  23. Parte AC. LPSN - List of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018; 68:1825–1829 [View Article][PubMed]
    [Google Scholar]
  24. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  25. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 1999
    [Google Scholar]
  26. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S et al. Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 2008; 36:W465–W469 [View Article][PubMed]
    [Google Scholar]
  27. Anisimova M, Gascuel O. Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Syst Biol 2006; 55:539–552 [View Article][PubMed]
    [Google Scholar]
  28. Contreras-Moreira B, Vinuesa P, Get_homologues VP. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol 2013; 79:7696–7701 [View Article][PubMed]
    [Google Scholar]
  29. Li L, Stoeckert CJ, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 2003; 13:2178–2189 [View Article][PubMed]
    [Google Scholar]
  30. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004; 32:1792–1797 [View Article][PubMed]
    [Google Scholar]
  31. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article][PubMed]
    [Google Scholar]
  32. Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000; 17:540–552 [View Article][PubMed]
    [Google Scholar]
  33. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  34. Konstantinidis KT, Tiedje JM. Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci USA 2005; 102:2567–2572 [View Article][PubMed]
    [Google Scholar]
  35. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  36. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res 2015; 43:6761–6771 [View Article][PubMed]
    [Google Scholar]
  37. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article][PubMed]
    [Google Scholar]
  38. Deloger M, El Karoui M, Petit MA. A genomic distance based on MUM indicates discontinuity between most bacterial species and genera. J Bacteriol 2009; 191:91–99 [View Article][PubMed]
    [Google Scholar]
  39. Kong BH, Liu QF, Liu M, Liu Y, Liu L et al. Paenibacillus typhae sp. nov., isolated from roots of Typha angustifolia L. Int J Syst Evol Microbiol 2013; 63:1037–1044 [View Article][PubMed]
    [Google Scholar]
  40. Yoon JH, Oh HM, Yoon BD, Kang KH, Park YH. Paenibacillus kribbensis sp. nov. and Paenibacillus terrae sp. nov., bioflocculants for efficient harvesting of algal cells. Int J Syst Evol Microbiol 2003; 53:295–301 [View Article][PubMed]
    [Google Scholar]
  41. Seldin L, Penido EG. Identification of Bacillus azotofixans using API tests. Antonie Van Leeuwenhoek 1986; 52:403–409 [View Article][PubMed]
    [Google Scholar]
  42. Elo S, Suominen I, Kämpfer P, Juhanoja J, Salkinoja-Salonen M et al. Paenibacillus borealis sp. nov., a nitrogen-fixing species isolated from spruce forest humus in Finland. Int J Syst Evol Microbiol 2001; 51:535–545 [View Article][PubMed]
    [Google Scholar]
  43. Ma Y, Zhang J, Chen S. Paenibacillus zanthoxyli sp. nov., a novel nitrogen-fixing species isolated from the rhizosphere of Zanthoxylum simulans . Int J Syst Evol Microbiol 2007; 57:873–877 [View Article][PubMed]
    [Google Scholar]
  44. Ma YC, Chen SF. Paenibacillus forsythiae sp. nov., a nitrogen-fixing species isolated from rhizosphere soil of Forsythia mira. Int J Syst Evol Microbiol 2008; 58:319–323 [View Article][PubMed]
    [Google Scholar]
  45. Jin HJ, Lv J, Chen SF. Paenibacillus sophorae sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Sophora japonica . Int J Syst Evol Microbiol 2011; 61:767–771 [View Article][PubMed]
    [Google Scholar]
  46. Xie JB, Zhang LH, Zhou YG, Liu HC, Chen SF. Paenibacillus taohuashanense sp. nov., a nitrogen-fixing species isolated from rhizosphere soil of the root of Caragana kansuensis Pojark. Antonie Van Leeuwenhoek 2012; 102:735–741 [View Article][PubMed]
    [Google Scholar]
  47. Euzeby JP. Taxonomic note: necessary correction of specific and subspecific epithets according to Rules 12c and 13b of the International Code of Nomenclature of Bacteria (1990 Revision). Int J Syst Bacteriol 1998; 48:1073–1075 [View Article]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.003572
Loading
/content/journal/ijsem/10.1099/ijsem.0.003572
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error