gen. nov., sp. nov. and sp. nov., two novel species of the family , isolated from high bacterial count raw cow’s milk Free

Abstract

Four Gram-stain positive, rod-shaped bacterial isolates, strains JZ R-183, JZ RK-117, DI-46 and JZ R-35, were recovered from bulk tank raw cow’s milk from three different dairy farms in Germany. Analysis of their 16S rRNA gene sequences indicated that these isolates belonged to the family , closely related to the genera , and . The 16S rRNA gene sequence similarity between the isolates and the next related type strains was below 97.3 %. Phylogenetic analysis of 16S rRNA, and genes revealed that these isolates formed two different groups in an independent cluster within the family . Chemotaxonomic analyses determined anteiso-C as predominant fatty acid, but also large amounts of iso-C, iso-C and iso-C were detected. The menaquinones MK-9(H) and MK-7(H) were present in all of the isolates and the polar lipid pattern contained the phospholipids diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol and a glycolipid. The peptidoglycan type of the isolates was A4α, with alanine, lysine and glutamate as dominating cell wall amino acids. The fatty acid and menaquinone profile differentiated the strains from the genera , and . The results of phylogenetic, phenotypic and chemotaxonomic analyses indicated that the isolates belonged to two novel species of a novel genus, for which the names gen. nov., sp. nov. and sp. nov. are proposed. The type strains are JZ R-183 (=DSM 107700=LMG 30902) and JZ R-35 (=DSM 107699=LMG 30901).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003570
2019-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/9/2862.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003570&mimeType=html&fmt=ahah

References

  1. Pribram E. A contribution to the classification of microorganisms. J Bacteriol 1929; 18:361–394[PubMed]
    [Google Scholar]
  2. Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 1997; 47:479–491 [View Article]
    [Google Scholar]
  3. Busse H-J. Family I. Micrococcaceae Pribram 1929, 361AL emend. Stackebrandt, Rainey and Ward-Rainey 1997, 479. In Goodfellow M, Kämpfer P, Busse H-J, Trujillo ME, Suzuki K et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 5A New York: Springer; 2012 pp. 571
    [Google Scholar]
  4. Busse H-J. Review of the taxonomy of the genus Arthrobacter, emendation of the genus Arthrobacter sensu lato, proposal to reclassify selected species of the genus Arthrobacter in the novel genera Glutamicibacter gen. nov., Paeniglutamicibacter gen. nov., Pseudoglutamicibacter gen. nov., Paenarthrobacter gen. nov. and Pseudarthrobacter gen. nov., and emended description of Arthrobacter roseus. Int J Syst Evol Microbiol 2016; 66:9–37 [View Article][PubMed]
    [Google Scholar]
  5. Prakash O, Sharma A, Nimonkar Y, Shouche YS. Proposal for creation of a new genus Neomicrococcus gen. nov. to accommodate Zhihengliuella aestuarii Baik et al. 2011 and Micrococcus lactis Chittpurna et al. 2011 as Neomicrococcus aestuarii comb. nov. and Neomicrococcus lactis comb. nov. Int J Syst Evol Microbiol 2015; 65:3771–3776 [View Article][PubMed]
    [Google Scholar]
  6. Addis E, Fleet GH, Cox JM, Kolak D, Leung T. The growth, properties and interactions with the maturation of Camembert and blue-veined cheeses. Int J Food Microbiol 2001; 69:25–36
    [Google Scholar]
  7. Bockelmann W, Hoppe-Seyler T. The surface flora of bacterial smear-ripened cheeses from cow's and goat's milk. Int Dairy J 2001; 11:307–314 [View Article]
    [Google Scholar]
  8. Delbès C, Ali-Mandjee L, Montel MC. Monitoring bacterial communities in raw milk and cheese by culture-dependent and -independent 16S rRNA gene-based analyses. Appl Environ Microbiol 2007; 73:1882–1891 [View Article][PubMed]
    [Google Scholar]
  9. Hahne J, Isele D, Berning J, Lipski A. The contribution of fast growing, psychrotrophic microorganisms on biodiversity of refrigerated raw cow's milk with high bacterial counts and their food spoilage potential. Food Microbiol 2019; 79:11–19 [View Article][PubMed]
    [Google Scholar]
  10. Zimmermann J, Rückert C, Kalinowski J, Lipski A. Corynebacterium crudilactis sp. nov., isolated from raw cow's milk. Int J Syst Evol Microbiol 2016; 66:5288–5293 [View Article][PubMed]
    [Google Scholar]
  11. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  12. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  13. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  14. Gerhardt P. Manual of Methods for General Bacteriology Washington: American Society for Microbiology; 1981
    [Google Scholar]
  15. Harrigan WF. Laboratory Methods in Food Microbiology, 3rd ed. San Diego: Academic Press; 1998
    [Google Scholar]
  16. Kolari M, Nuutinen J, Salkinoja-Salonen MS. Mechanisms of biofilm formation in paper machine by Bacillus species: the role of Deinococcus geothermalis . J Ind Microbiol Biotechnol 2001; 27:343–351 [View Article][PubMed]
    [Google Scholar]
  17. Wiertz R, Schulz SC, Müller U, Kämpfer P, Lipski A. Corynebacterium frankenforstense sp. nov. and Corynebacterium lactis sp. nov., isolated from raw cow milk. Int J Syst Evol Microbiol 2013; 63:4495–4501 [View Article][PubMed]
    [Google Scholar]
  18. Baik KS, Lim CH, Park SC, Choe HN, Kim HJ et al. Zhihengliuella aestuarii sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2011; 61:1671–1676 [View Article][PubMed]
    [Google Scholar]
  19. Chittpurna, Singh PK, Verma D, Pinnaka AK, Mayilraj S et al. Micrococcus lactis sp. nov., isolated from dairy industry waste. Int J Syst Evol Microbiol 2011; 61:2832–2836 [View Article][PubMed]
    [Google Scholar]
  20. Collins MD, Kroppenstedt RM. Lipid composition as a guide to the classification of some coryneform bacteria-containing an A4α type peptidoglycan (Schleifer and Kandler). Syst Appl Microbiol 1983; 4:95–104 [View Article][PubMed]
    [Google Scholar]
  21. Stackebrandt E, Fowler VJ, Fiedler F, Seiler H. Taxonomic studies on Arthrobacter nicotianae and related taxa: Description of Arthrobacter uratoxydans sp. nov. and Arthrobacter sulfureus sp. nov. and reclassification of Brevibacterium protophormiae as Arthrobacter protophormiae comb. nov. Syst Appl Microbiol 1983; 4:470–486 [View Article][PubMed]
    [Google Scholar]
  22. Altenburger P, Kämpfer P, Schumann P, Steiner R, Lubitz W et al. Citricoccus muralis gen. nov., sp. nov., a novel actinobacterium isolated from a medieval wall painting. Int J Syst Evol Microbiol 2002; 52:2095–2100 [View Article][PubMed]
    [Google Scholar]
  23. O'Donnell AG, Minnikin DE, Goodfellow M, Parlett JH. The analysis of actinomycete wall amino acids by gas chromatography. FEMS Microbiol Lett 1982; 15:75E–78 [View Article]
    [Google Scholar]
  24. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477[PubMed]
    [Google Scholar]
  25. van Waasbergen LG, Balkwill DL, Crocker FH, Bjornstad BN, Miller RV. Genetic diversity among Arthrobacter species collected across a heterogeneous series of terrestrial deep-subsurface sediments as determined on the basis of 16S rRNA and recA gene sequences. Appl Environ Microbiol 2000; 66:3454–3463 [View Article][PubMed]
    [Google Scholar]
  26. Rozen S, Skaletsky HJ. Primer3Code; 1998 available at http://www-genome.wi.mit.edu/genome_software/other/primer3.html
  27. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  28. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  29. Weber M, Schünemann W, Fuß J, Kämpfer P, Lipski A. Stenotrophomonas lactitubi sp. nov. and Stenotrophomonas indicatrix sp. nov., isolated from surfaces with food contact. Int J Syst Evol Microbiol 2018; 68:1830–1838
    [Google Scholar]
  30. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  31. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  32. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  33. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003570
Loading
/content/journal/ijsem/10.1099/ijsem.0.003570
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed