1887

Abstract

A novel bacterial isolate, designated as strain BM15, was isolated from the gastrointestinal tract of a blood cockle, , which was collected from the foreshore of Beolgyo-eup, Republic of Korea. Strain BM15 was Gram-stain-negative, non-motile, strictly aerobic and short-rod-shaped. Optimum growth of the isolate occurred at 20 °C, in the presence of 4 % (w/v) NaCl and at pH 6. The 16S rRNA gene sequence analysis showed that strain BM15 belonged to the genus and had more than 97 % 16S rRNA gene sequence similarity to ‘’ J6 (97.40 % similarity) and HDM-25 (97.04 %). The polar lipid profile of strain BM15 comprised phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, an unidentified glycolipid and two unidentified lipids. The predominant respiratory quinone was ubiquinone-10. The major cellular fatty acid (>20 %) was summed feature 8 (C 7 and/or C 6). The complete genome sequence of strain BM15 comprised 3,759,866 bp with 62.2 mol% G+C content. The results of the phylogenetic, phenotypic and genotypic analyses indicated that strain BM15 represents a novel species in the genus , for which the name is proposed. The type strain is BM15 (=KCTC 72032=JCM 33289).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003561
2019-09-01
2019-09-20
Loading full text...

Full text loading...

References

  1. Cv Linné, Salvius L. Caroli Linnaei.Systema naturae per regna tria naturae: secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Holmiae: Impensis Direct. Laurentii Salvii 1758
    [Google Scholar]
  2. Davis DH, Doudoroff M, Stanier RY, Mandel M. Proposal to reject the genus Hydrogenomonas: Taxonomic implications. IJSEM 1969;19:375–390
    [Google Scholar]
  3. Kämpfer P, Aurass P, Karste S, Flieger A, Glaeser SP. Paracoccus contaminans sp. nov., isolated from a contaminated water microcosm. Int J Syst Evol Microbiol 2016;66:5101–5105 [CrossRef][PubMed]
    [Google Scholar]
  4. Kelly DP, Rainey FA, Wood AP. The genus Paracoccus. The Prokaryotesvol. 5 Proteobacteria: Alpha and Beta Subclasses; 2006; pp.232–249
    [Google Scholar]
  5. Nguyen NL, Kim YJ, Hoang VA, Tran BT, Pham HS et al. Paracoccus panacisoli sp. nov., isolated from a forest soil cultivated with Vietnamese ginseng. Int J Syst Evol Microbiol 2015;65:1491–1497 [CrossRef][PubMed]
    [Google Scholar]
  6. Roh SW, Nam YD, Chang HW, Kim KH, Kim MS et al. Paracoccus aestuarii sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2009;59:790–794 [CrossRef][PubMed]
    [Google Scholar]
  7. Park S, Choi J, Choi SJ, Yoon JH. Paracoccus litorisediminis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2017;67:4760–4766 [CrossRef][PubMed]
    [Google Scholar]
  8. Sun X, Luo P, Li M. Paracoccus angustae sp. nov., isolated from soil. Int J Syst Evol Microbiol 2015;65:3469–3475 [CrossRef][PubMed]
    [Google Scholar]
  9. Park S, Yoon SY, Jung YT, Won SM, Park DS et al. Paracoccus aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2016;66:2992–2998 [CrossRef][PubMed]
    [Google Scholar]
  10. Nakamura A. Paracoccus laeviglucosivorans sp. nov., an l-glucose-utilizing bacterium isolated from soil. Int J Syst Evol Microbiol 2015;65:3878–3884 [CrossRef][PubMed]
    [Google Scholar]
  11. Dastager SG, Deepa CK, Li WJ, Tang SK, Pandey A. Paracoccus niistensis sp. nov., isolated from forest soil, India. Antonie van Leeuwenhoek 2011;99:501–506 [CrossRef][PubMed]
    [Google Scholar]
  12. Kim YO, Kong HJ, Park S, Kang SJ, Kim KK et al. Paracoccus fistulariae sp. nov., a lipolytic bacterium isolated from bluespotted cornetfish, Fistularia commersonii. Int J Syst Evol Microbiol 2010;60:2908–2912 [CrossRef][PubMed]
    [Google Scholar]
  13. Tian J, Long X, Zhang S, Qin Q, Gan L et al. Screening cyhalothrin degradation strains from locust epiphytic bacteria and studying Paracoccus acridae SCU-M53 cyhalothrin degradation process. Environ Sci Pollut Res Int 2018;25:11505–11515 [CrossRef][PubMed]
    [Google Scholar]
  14. Parte AC. LPSN - list of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018;68:1825–1829 [CrossRef][PubMed]
    [Google Scholar]
  15. Lane DJ. 16S/23S rRNA sequencing. Nucleic Acid Techniques in Bacterial Systematics New York, NY: John Wiley and SonsIn; 1991
    [Google Scholar]
  16. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  17. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  18. Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  19. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  20. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  21. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  22. Hyun DW, Kim JY, Kim MS, Shin NR, Kim HS et al. Actibacter haliotis sp. nov., isolated from the gut of an abalone, Haliotis discus hannai, and emended description of the genus Actibacter. Int J Syst Evol Microbiol 2015;65:49–55 [CrossRef][PubMed]
    [Google Scholar]
  23. Tittsler RP, Sandholzer LA. The use of semi-solid agar for the detection of bacterial motility. J Bacteriol 1936;31:575–580[PubMed]
    [Google Scholar]
  24. MIDI Sherlock Microbial Identification System Operating Manual, Version 3.0 Newark, DE: MIDI, Inc; 1999
    [Google Scholar]
  25. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  26. Collins MD, Jones D. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 1981;45:316–354[PubMed]
    [Google Scholar]
  27. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996;42:457–469 [CrossRef]
    [Google Scholar]
  28. Lin P, Yan ZF, Won KH, Yang JE, Li CT et al. Paracoccus hibiscisoli sp. nov., isolated from the rhizosphere of Mugunghwa (Hibiscus syriacus). Int J Syst Evol Microbiol 2017;67:2452–2458 [CrossRef][PubMed]
    [Google Scholar]
  29. Xin H, Itoh T, Zhou P, Suzuki K, Kamekura M et al. Natrinema versiforme sp. nov., an extremely halophilic archaeon from Aibi salt lake, Xinjiang, China. Int J Syst Evol Microbiol 2000;50 Pt 3:1297–1303 [CrossRef][PubMed]
    [Google Scholar]
  30. Siakotos AN. Analytical separation of nonlipid water soluble substances and gangliosides from other lipids by dextran gel column chromatography. J Am Oil Chem Soc 1965;42:913–919 [CrossRef][PubMed]
    [Google Scholar]
  31. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  32. Mccarthy A. Third generation DNA sequencing: pacific biosciences' single molecule real time technology. Chem Biol 2010;17:675–676 [CrossRef][PubMed]
    [Google Scholar]
  33. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013;10:563–569 [CrossRef][PubMed]
    [Google Scholar]
  34. Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E et al. IMG: the Integrated Microbial Genomes database and comparative analysis system. Nucleic Acids Res 2012;40:D115–D122 [CrossRef][PubMed]
    [Google Scholar]
  35. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66:1100–1103 [CrossRef][PubMed]
    [Google Scholar]
  36. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  37. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  38. Wu ZG, Zhang DF, Liu YL, Wang F, Jiang X et al. Paracoccus zhejiangensis sp. nov., isolated from activated sludge in wastewater-treatment system. Antonie van Leeuwenhoek 2013;104:123–128 [CrossRef][PubMed]
    [Google Scholar]
  39. Jung YT, Park S, Lee JS, Yoon JH. Paracoccus lutimaris sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 2014;64:2763–2769 [CrossRef][PubMed]
    [Google Scholar]
  40. Chen WM, Li YS, Young CC, Sheu SY. Paracoccus mangrovi sp. nov., isolated from a mangrove. Int J Syst Evol Microbiol 2017;67:2689–2695 [CrossRef][PubMed]
    [Google Scholar]
  41. Xue H, Piao CG, Guo MW, Wang LF, Li Y. Paracoccus aerius sp. nov., isolated from air. Int J Syst Evol Microbiol 2017;67:2586–2591 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003561
Loading
/content/journal/ijsem/10.1099/ijsem.0.003561
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error