1887

Abstract

Two novel strains, designated YLB-02 and YLB-04, were isolated from the deep-sea sediments of Yap Trench located in the Pacific Ocean. Cells of the strains were Gram-stain-positive, oxidase- and catalase-positive and rod-shaped. Phylogenetic analyses based on 16S rRNA gene sequences indicated that strain YLB-02 belonged to the genus and strain YLB-04 belonged to the genus . Strain YLB-02 showed similarities of 96.9 % with CCUG 53201, 96.3 % with CL-MP28, 96.1 % with J8B and 95.7 % with Ma-21. Strain YLB-04 showed the highest sequence similarity of 97.4 % with SYP-B691. The average nucleotide identity (ANI) and the DNA–DNA hybridisation (DDH) estimate values for strain YLB-02 and YLB-04 with their related type strains were below the respective threshold for species differentiation. The G+C contents of strains YLB-02 and YLB-04 were 37.3 and 45.4 mol%. The predominant (>10 %) cellular fatty acids of strain YLB-02 were iso-C, iso-C, iso-C and Cω7 alcohol, and those of strain YLB-04 were C, iso-C, anteiso-C and C. Their predominant ubiquinone was MK-7. The cell-wall peptidoglycan of strain YLB-02 contained glutamic acid, alanine, aspartic acid, lysine and ornithine, but no -diaminopimelic acid, while strain YLB-04 contained -diaminopimelic acid, glutamic acid, alanine, aspartic acid, lysine and ornithine. In addition to diphosphatidylglycerol (DPG) and phosphatidylglycerol (PG), the polar lipids of strain YLB-02 also consisted of an unidentified glycolipid (GL), two unidentified polar lipids (L1 and L2) and two unidentified phospholipids (PL1 and PL2), and those of strain YLB-04 also consisted of phosphatidylethanolamine (PE) and an unidentified phospholipid (PL). Based on phenotypic, genotypic and chemotaxonomic characteristics, two novel species are proposed, sp. nov. with YLB-02 (=MCCC 1A12699=JCM 32870) and sp. nov. with YLB-04 (=MCCC 1A12711=JCM 32872) as the type strains.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003559
2019-10-01
2019-10-21
Loading full text...

Full text loading...

References

  1. Lu J, Nogi Y, Takami H. Oceanobacillus iheyensis gen. nov., sp. nov., a deep-sea extremely halotolerant and alkaliphilic species isolated from a depth of 1050 m on the Iheya Ridge. FEMS Microbiol Lett 2001;205:291–297 [CrossRef][PubMed]
    [Google Scholar]
  2. Yumoto I, Hirota K, Nodasaka Y, Nakajima K. Oceanobacillus oncorhynchi sp. nov., a halotolerant obligate alkaliphile isolated from the skin of a rainbow trout (Oncorhynchus mykiss), and emended description of the genus Oceanobacillus. Int J Syst Evol Microbiol 2005;55:1521–1524 [CrossRef][PubMed]
    [Google Scholar]
  3. Kim YG, Choi DH, Hyun S, Cho BC. Oceanobacillus profundus sp. nov., isolated from a deep-sea sediment core. Int J Syst Evol Microbiol 2007;57:409–413 [CrossRef][PubMed]
    [Google Scholar]
  4. Yu C, Yu S, Zhang Z, Li Z, Zhang XH. Oceanobacillus pacificus sp. nov., isolated from a deep-sea sediment. Int J Syst Evol Microbiol 2014;64:1278–1283 [CrossRef][PubMed]
    [Google Scholar]
  5. Kim W, Siamphan C, Kim JH, Sukhoom A. Oceanobacillus arenosus sp. nov., a moderately halophilic bacterium isolated from marine sand. Int J Syst Evol Microbiol 2015;65:2943–2948 [CrossRef][PubMed]
    [Google Scholar]
  6. Nam JH, Bae W, Lee DH. Oceanobacillus caeni sp. nov., isolated from a Bacillus-dominated wastewater treatment system in Korea. Int J Syst Evol Microbiol 2008;58:1109–1113 [CrossRef][PubMed]
    [Google Scholar]
  7. Lee DC, Kang H, Weerawongwiwat V, Kim B, Choi YW et al. Oceanobacillus chungangensis sp. nov., isolated from a sand dune. Int J Syst Evol Microbiol 2013;63:3666–3671 [CrossRef][PubMed]
    [Google Scholar]
  8. Wu M, Yang G, Yu Z, Zhuang L, Jin Y et al. Oceanobacillus luteolus sp. nov., isolated from soil. Int J Syst Evol Microbiol 2014;64:1495–1500 [CrossRef][PubMed]
    [Google Scholar]
  9. Hirota K, Hanaoka Y, Nodasaka Y, Yumoto I. Oceanobacillus polygoni sp. nov., a facultatively alkaliphile isolated from indigo fermentation fluid. Int J Syst Evol Microbiol 2013;63:3307–3312 [CrossRef][PubMed]
    [Google Scholar]
  10. Namwong S, Tanasupawat S, Lee KC, Lee JS. Oceanobacillus kapialis sp. nov., from fermented shrimp paste in Thailand. Int J Syst Evol Microbiol 2009;59:2254–2259 [CrossRef][PubMed]
    [Google Scholar]
  11. Tominaga T, Sy A, Oyaizu H, Yokota A, Nov O. isolated from soy sauce production equipment in Japan. J Gen Appl Microbiol 2009;55:225–232
    [Google Scholar]
  12. Whon TW, Jung MJ, Roh SW, Nam YD, Park EJ et al. Oceanobacillus kimchii sp. nov. isolated from a traditional Korean fermented food. J Microbiol 2010;48:862–866 [CrossRef][PubMed]
    [Google Scholar]
  13. Lee SY, Oh TK, Kim W, Yoon JH. Oceanobacillus locisalsi sp. nov., isolated from a marine solar saltern. Int J Syst Evol Microbiol 2010;60:2758–2762 [CrossRef][PubMed]
    [Google Scholar]
  14. Amoozegar MA, Bagheri M, Makhdoumi-Kakhki A, Didari M, Schumann P et al. Oceanobacillus limi sp. nov., a moderately halophilic bacterium from a salt lake. Int J Syst Evol Microbiol 2014;64:1284–1289 [CrossRef][PubMed]
    [Google Scholar]
  15. Amoozegar MA, Bagheri M, Makhdoumi A, Nikou MM, Fazeli SAS et al. Oceanobacillus halophilus sp. nov., a novel moderately halophilic bacterium from a hypersaline lake. Int J Syst Evol Microbiol 2016;66:1317–1322 [CrossRef][PubMed]
    [Google Scholar]
  16. Amoozegar MA, Bagheri M, Makhdoumi A, Mehrshad M, Didari M et al. Oceanobacillus longus sp. nov., a moderately halophilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol 2016;66:4225–4230 [CrossRef][PubMed]
    [Google Scholar]
  17. Long X, Ye R, Zhang S, Liu B, Zhang Y et al. Oceanobacillus damuensis sp. nov. and Oceanobacillus rekensis sp. nov., isolated from saline alkali soil samples. Antonie van Leeuwenhoek 2015;108:731–739 [CrossRef][PubMed]
    [Google Scholar]
  18. Yang JY, Huo YY, Xu XW, Meng FX, Wu M et al. Oceanobacillus neutriphilus sp. nov., isolated from activated sludge in a bioreactor. Int J Syst Evol Microbiol 2010;60:2409–2414 [CrossRef][PubMed]
    [Google Scholar]
  19. Cohn F. Untersuchungen über Bakterien. Bertrage zur Biologie der Pflanzen Heft 1872;1:127–224
    [Google Scholar]
  20. Keita MB, Diene SM, Robert C, Raoult D, Fournier PE et al. Non-contiguous finished genome sequence and description of Bacillus massiliogorillae sp. nov. Stand Genomic Sci 2013;9:93–105 [CrossRef][PubMed]
    [Google Scholar]
  21. Jiang Z, Zhang DF, Khieu TN, Son CK, Zhang XM et al. Bacillus tianshenii sp. nov., isolated from a marine sediment sample. Int J Syst Evol Microbiol 2014;64:1998–2002 [CrossRef][PubMed]
    [Google Scholar]
  22. Caccamo D, Gugliandolo C, Stackebrandt E, Maugeri TL. Bacillus vulcani sp. nov., a novel thermophilic species isolated from a shallow marine hydrothermal vent. Int J Syst Evol Microbiol 2000;50 Pt 6:2009–2012 [CrossRef][PubMed]
    [Google Scholar]
  23. Poudel P, Miyamoto H, Miyamoto H, Okugawa Y, Tashiro Y et al. Thermotolerant Bacillus kokeshiiformis sp. nov. isolated from marine animal resources compost. Int J Syst Evol Microbiol 2014;64:2668–2674 [CrossRef][PubMed]
    [Google Scholar]
  24. Lane DJ. 16S/23S rRNA sequencing. Nucleic Acid Techniques in Bacterial Systematics 1991;115–175
    [Google Scholar]
  25. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  26. Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 1870;2016:33
    [Google Scholar]
  27. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  28. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  29. Rzhetsky A, Nei M. Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol 1992;35:367–375 [CrossRef][PubMed]
    [Google Scholar]
  30. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  31. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  32. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  33. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  34. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  35. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the Ad Hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  36. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  37. Skerman VBD. A Guide to the Identification of the Genera of Bacteria, 2nd ed. Baltimore: Williams & Wilkins; 1967
    [Google Scholar]
  38. Schaeffer AB, Fulton MD. A simplified method of staining endospores. Science 1933;77:194 [CrossRef][PubMed]
    [Google Scholar]
  39. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press (English translation); 2001
    [Google Scholar]
  40. Zhang MY, Cheng J, Cai Y, Zhang TY, Wu YY et al. Bacillus notoginsengisoli sp. nov., a novel bacterium isolated from the rhizosphere of Panax notoginseng. Int J Syst Evol Microbiol 2017;67:2581–2585 [CrossRef][PubMed]
    [Google Scholar]
  41. Kämpfer P, Busse HJ, McInroy JA, Hu CH, Kloepper JW et al. Paenibacillus rhizoplanae sp. nov., isolated from the rhizosphere of Zea mays. Int J Syst Evol Microbiol 2017;67:1058–1063 [CrossRef][PubMed]
    [Google Scholar]
  42. Liu R, Wang L, Wei Y, Fang J. The hadal biosphere: Recent insights and new directions. Deep Sea Research Part II: Topical Studies in Oceanography 2018;155:11–18 [CrossRef]
    [Google Scholar]
  43. Saunders PM, Fofonoff NP. Conversion of pressure to depth in the ocean. Deep Sea Research and Oceanographic Abstracts 1976;23:109–111 [CrossRef]
    [Google Scholar]
  44. Wang J, Li J, Dasgupta S, Zhang L, Golovko MY et al. Alterations in membrane phospholipid fatty acids of Gram-positive piezotolerant bacterium Sporosarcina sp. DSK25 in response to growth pressure. Lipids 2014;49:347–356 [CrossRef][PubMed]
    [Google Scholar]
  45. Fang J, Zhang L, Bazylinski DA. Deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry. Trends Microbiol 2010;18:413–422 [CrossRef][PubMed]
    [Google Scholar]
  46. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI; 1990
    [Google Scholar]
  47. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
  48. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  49. Logan NA, Berge O, Bishop AH, Busse HJ, de Vos P et al. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 2009;59:2114–2121 [CrossRef][PubMed]
    [Google Scholar]
  50. Schleifer KH. Analysis of the chemical composition and primary structure of murein. Methods in Microbiology 1985;18:123–156
    [Google Scholar]
  51. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972;36:407–477[PubMed]
    [Google Scholar]
  52. Kämpfer P, Falsen E, Lodders N, Langer S, Busse HJ et al. Ornithinibacillus contaminans sp. nov., an endospore-forming species. Int J Syst Evol Microbiol 2010;60:2930–2934 [CrossRef][PubMed]
    [Google Scholar]
  53. Abd El-Rahman HA, Fritze D, Spröer C, Claus D. Two novel psychrotolerant species, Bacillus psychrotolerans sp. nov. and Bacillus psychrodurans sp. nov., which contain ornithine in their cell walls. Int J Syst Evol Microbiol 2002;52:2127–2133 [CrossRef][PubMed]
    [Google Scholar]
  54. Spanka R, Fritze D. Bacillus cohnii sp. nov., a new, obligately alkaliphilic, oval-spore-forming Bacillus species with ornithine and aspartic acid instead of diaminopimelic acid in the cell wall. Int J Syst Bacteriol 1993;43:150–156 [CrossRef][PubMed]
    [Google Scholar]
  55. Yongchang O, Xiang W, Wang G. Oceanobacillus bengalensis sp. nov., a bacterium isolated from seawater of the Bay of Bengal. Antonie Van Leeuwenhoek 2015;108:1189–1196 [CrossRef][PubMed]
    [Google Scholar]
  56. Lechevalier MP, Lechevalier HA. The chemotaxonomy of actinomycetes. In Dietz A, Dietz A, Thayer DW. (editors) Actinomycete Taxonomy (SIM Special Publication no. 6) Fairfax, VA: Society for Industrial Microbiology; 1980; pp.227–291
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003559
Loading
/content/journal/ijsem/10.1099/ijsem.0.003559
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error