1887

Abstract

During a study of the Kyonggi University soil bacterial diversity, an aerobic, non-motile, Gram-stain-negative, non-spore-forming, rod-shaped, yellow pigmented bacterium, designated strain RD-2-33 was isolated. Strain RD-2-33 grew optimally at 28–35 °C and pH 7.0–7.5; hydrolysed gelatin and DNA; and tolerated 1 % of NaCl. A phylogenetic analysis based on its 16S rRNA gene sequence revealed that strain RD-2-33 clustered with the genus Flavobacterium . The closest member was Flavobacterium dankookense ARSA-19 (97.1 % sequence similarity) and Flavobacterium cheonhonense ARSA-15 (96.7 %). Sole respiratory quinone was MK-6. The major polar lipids were phosphatidylethanolamine and an unidentified polar lipid. The major cellular fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH, and iso-C15 : 1 G. The DNA G+C content was 38.6 mol%. The average nucleotide identity (ANI) and in silico DNA–DNA hybridisation relatedness between strain RD-2-33 and Flavobacterium dankookense DSM 25687 were 75.2 and 19.3 %, respectively. Based on the polyphasic and phylogenetic data, strain RD-2-33 represents a novel species of the genus Flavobacterium , for which the name Flavobacterium silvisoli sp. nov. is proposed. The type strain is RD-2-33 (=KEMB 9005–742=KACC 21178=NBRC 113789).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003551
2019-06-25
2019-08-25
Loading full text...

Full text loading...

References

  1. Bergey DH, Harrison FC, Breed RS, Hammer BW, Huntoon F et al. Bergey’s Manual of Determinative Bacteriology Baltimore: Williams & Wilkins Co; 1923
    [Google Scholar]
  2. Dahal RH, Kim J. Flavobacterium ureilyticum sp. nov., a novel urea hydrolysing bacterium isolated from stream bank soil. Antonie van Leeuwenhoek 2018;111: 2131– 2139 [CrossRef] [PubMed]
    [Google Scholar]
  3. Dahal RH, Chaudhary DK, Kim J. Flavobacterium flaviflagrans sp. nov., a bacterium of the family Flavobacteriaceae isolated from forest soil. Int J Syst Evol Microbiol 2017;67: 2653– 2659 [CrossRef] [PubMed]
    [Google Scholar]
  4. Feng XM, Tan X, Jia L, Long PP, Han L et al. Flavobacterium buctense sp. nov., isolated from freshwater. Arch Microbiol 2015;197: 1109– 1115 [CrossRef] [PubMed]
    [Google Scholar]
  5. Lee S, Oh JH, Weon HY, Ahn TY. Flavobacterium cheonhonense sp. nov., isolated from a freshwater reservoir. J Microbiol 2012;50: 562– 566 [CrossRef] [PubMed]
    [Google Scholar]
  6. Lee S, Weon HY, Han K, Ahn TY. Flavobacterium dankookense sp. nov., isolated from a freshwater reservoir, and emended descriptions of Flavobacterium cheonanense, F. chungnamense, F. koreense and F. aquatile. Int J Syst Evol Microbiol 2012;62: 2378– 2382 [CrossRef] [PubMed]
    [Google Scholar]
  7. Xiao YP, Hui W, Lee JS, Lee KC, Quan ZX et al. Flavobacterium dongtanense sp. nov., isolated from the rhizosphere of a wetland reed. Int J Syst Evol Microbiol 2011;61: 343– 346 [CrossRef] [PubMed]
    [Google Scholar]
  8. Ryu SH, Park M, Jeon Y, Lee JR, Park W et al. Flavobacterium filum sp. nov., isolated from a wastewater treatment plant in Korea. Int J Syst Evol Microbiol 2007;57: 2026– 2030 [CrossRef] [PubMed]
    [Google Scholar]
  9. Song L, Liu H, Huang Y, Dai X, Zhou Y et al. Flavobacterium marinum sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2013;63: 3551– 3555 [CrossRef] [PubMed]
    [Google Scholar]
  10. Chaudhary DK, Kim DU, Kim D, Kim J. Flavobacterium petrolei sp. nov., a novel psychrophilic, diesel-degrading bacterium isolated from oil-contaminated Arctic soil. Sci Rep 2019;9: 4134 [CrossRef] [PubMed]
    [Google Scholar]
  11. Dong K, Chen F, du Y, Wang G. Flavobacterium enshiense sp. nov., isolated from soil, and emended descriptions of the genus Flavobacterium and Flavobacterium cauense, Flavobacterium saliperosum and Flavobacterium suncheonense. Int J Syst Evol Microbiol 2013;63: 886– 892 [CrossRef] [PubMed]
    [Google Scholar]
  12. Liu Y, Jin JH, Zhou YG, Liu HC, Liu ZP. Flavobacterium caeni sp. nov., isolated from a sequencing batch reactor for the treatment of malachite green effluents. Int J Syst Evol Microbiol 2010;60: 417– 421 [CrossRef] [PubMed]
    [Google Scholar]
  13. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA et al. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 2008;74: 2461– 2470 [CrossRef] [PubMed]
    [Google Scholar]
  14. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  15. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012;28: 1823– 1829 [CrossRef] [PubMed]
    [Google Scholar]
  16. Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4: 406– 425 [CrossRef] [PubMed]
    [Google Scholar]
  18. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20: 406 [CrossRef]
    [Google Scholar]
  19. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  20. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16: 111– 120 [CrossRef] [PubMed]
    [Google Scholar]
  21. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  22. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110: 1281– 1286 [CrossRef] [PubMed]
    [Google Scholar]
  23. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14: 60 [CrossRef] [PubMed]
    [Google Scholar]
  24. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106: 19126– 19131 [CrossRef] [PubMed]
    [Google Scholar]
  25. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int J Syst Evol Microbiol 1987;37: 463– 464 [CrossRef]
    [Google Scholar]
  26. Doetsch RN. Determinative methods of light microscopy. In Gerdhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA et al. (editors) Manual of Methods for General Bacteriology. American Society for Microbiology Washington, DC: USA; 1981; pp. 21– 33
    [Google Scholar]
  27. Breznak JA, Costilow RN. Physicochemical factors in growth. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al. (editors) Methods for General and Molecular Bacteriology Washinton, DC, USA: American Society of Microbiology; 2007; pp. 309– 329
    [Google Scholar]
  28. Smibert RM, Krieg NR. Phenotypic characterization. In Methods for General and Molecular Bacteriology Washington, DC, USA: American Society for Microbiology; 1994; pp. 607– 654
    [Google Scholar]
  29. Reichenbach H. The order Cytophagales. In Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH et al. (editors) The Prokaryotes, 2nd ed.vol. 4 New York: Springer; 1992; pp. 3631– 3675
    [Google Scholar]
  30. Sasser M. Bacterial Identification by Gas Chromatographic Analysis of Fatty Acid Methyl Esters (GC-FAME), MIDI Tech Note 101. Newark: MIDI Inc; 1990
    [Google Scholar]
  31. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2: 233– 241 [CrossRef]
    [Google Scholar]
  32. Komagata K, Suzuki K. 4 lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1988;19: 161– 207
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003551
Loading
/content/journal/ijsem/10.1099/ijsem.0.003551
Loading

Data & Media loading...

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error