1887

Abstract

A strictly anaerobic, Gram-stain-negative, non-spore-forming, non-motile, non-pigmented bacterium, strain J115, was isolated from human faeces. Cells of strain J115 were straight rods, generally 1.8–3.0 µm, but could be up to 18 µm long. Growth occurred below 2 % (w/v) NaCl and 2 % (v/v) bile. Strain J115 produced acid from myo-inositol but not from d-glucose, d-ribose or d-xylose. Butyric acid was the major end-product from myo-inositol. The genomic DNA G+C content was 58.92 mol%. Phylogenetic analysis based on 16S rRNA gene sequencing indicated that the closest cultivated neighbours of strain J115 were Oscillibacter ruminantium GH1 (95.4 % similarity) and Oscillibacter valericigenes Sjm18-20 (94.1 %). Strain J115 was also related to the not-yet-cultured bacterium Oscillospira guilliermondii (92–93 % similarity). Coherently with the 16S rRNA gene sequence results, the ANI scores don't have units of strain J115 to O. ruminantium GH1 and O. valericigenes Sjm18-20 were 73.37 and 73.24, respectively, while in silico estimations of DNA–DNA hybridization were both 20.4 %, with confidence intervals of 18.2–22.9 % and 18.2–22.8 %, respectively. The major fatty acids were iso-C15 : 0 (24.2 %), C18 : 0 DMA (18.4 %), anteiso-C15 : 0 (15.2 %) and C16 : 0 DMA (7.6 %). No respiratory quinone was detected. Based on phenotypic features and phylogenetic position, it is proposed that this isolate represents a novel species in a new genus, Dysosmobacter welbionis gen. nov., sp. nov. The type strain of Dysosmobacter welbionis is J115 (DSM 106889=LMG 30601).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003547
2019-06-24
2019-09-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/ijsem.003547.zip/ijsem003547.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003547&mimeType=html&fmt=ahah

References

  1. Iino T, Mori K, Tanaka K, Suzuki K, Harayama S. Oscillibacter valericigenes gen. nov., sp. nov., a valerate-producing anaerobic bacterium isolated from the alimentary canal of a Japanese corbicula clam. Int J Syst Evol Microbiol 2007;57: 1840– 1845 [CrossRef] [PubMed]
    [Google Scholar]
  2. Lee GH, Rhee MS, Chang DH, Lee J, Kim S et al. Oscillibacter ruminantium sp. nov., isolated from the rumen of Korean native cattle. Int J Syst Evol Microbiol 2013;63: 1942– 1946 [CrossRef] [PubMed]
    [Google Scholar]
  3. Grech-Mora I, Fardeau ML, Patel BKC, Ollivier B, Rimbault A et al. Isolation and characterization of Sporobacter termitidis gen. nov., sp. nov., from the digestive tract of the wood-feeding termite Nasutitermes lujae. Int J Syst Bacteriol 1996;46: 512– 518 [CrossRef]
    [Google Scholar]
  4. Morris GN, Winter J, Cato EP, Ritchie AE, Bokkenheuser VD. Eubacterium desmolans sp. nov., a steroid desmolase-producing species from cat fecal flora. Int J Syst Evol Microbiol 1986;36: 183– 186
    [Google Scholar]
  5. Ahn S, Jin TE, Chang DH, Rhee MS, Kim HJ et al. Agathobaculum butyriciproducens gen. nov.  sp. nov., a strict anaerobic, butyrate-producing gut bacterium isolated from human faeces and reclassification of Eubacterium desmolans as Agathobaculum desmolans comb. nov. Int J Syst Evol Microbiol 2016;66: 3656– 3661 [CrossRef] [PubMed]
    [Google Scholar]
  6. Moore WC, Johnson JL, Holdeman LV. Emendation of Bacteroidaceae and Butyrivibrio and descriptions of Desulfomonas gen. nov. and ten new species in the genera Desulfomonas, Butyrivibrio, Eubacterium, Clostridium, and Ruminococcus. Int J Syst Evol Microbiol 1976;26: 238– 252
    [Google Scholar]
  7. Duncan SH, Hold GL, Harmsen HJ, Stewart CS, Flint HJ. Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int J Syst Evol Microbiol 2002;52: 2141– 2146 [CrossRef] [PubMed]
    [Google Scholar]
  8. Rehman A, Rausch P, Wang J, Skieceviciene J, Kiudelis G et al. Geographical patterns of the standing and active human gut microbiome in health and IBD. Gut 2016;65: 238– 248 [CrossRef] [PubMed]
    [Google Scholar]
  9. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA 2008;105: 16731– 16736 [CrossRef] [PubMed]
    [Google Scholar]
  10. Eeckhaut V, Machiels K, Perrier C, Romero C, Maes S et al. Butyricicoccus pullicaecorum in inflammatory bowel disease. Gut 2013;62: 1745– 1752 [CrossRef] [PubMed]
    [Google Scholar]
  11. Konikoff T, Gophna U. Oscillospira: a central, enigmatic component of the human gut microbiota. Trends Microbiol 2016;24: 523– 524 [CrossRef] [PubMed]
    [Google Scholar]
  12. Dione N, Khelaifia S, La Scola B, Lagier JC, Raoult D. A quasi-universal medium to break the aerobic/anaerobic bacterial culture dichotomy in clinical microbiology. Clin Microbiol Infect 2016;22: 53– 58 [CrossRef] [PubMed]
    [Google Scholar]
  13. Sizova MV, Hohmann T, Hazen A, Paster BJ, Halem SR et al. New approaches for isolation of previously uncultivated oral bacteria. Appl Environ Microbiol 2012;78: 194– 203 [CrossRef] [PubMed]
    [Google Scholar]
  14. Turner S, Pryer KM, Miao VP, Palmer JD. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 1999;46: 327– 338 [PubMed]
    [Google Scholar]
  15. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  16. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32: 1792– 1797 [CrossRef] [PubMed]
    [Google Scholar]
  17. Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 2004;101: 11030– 11035 [CrossRef] [PubMed]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4: 406– 425 [CrossRef] [PubMed]
    [Google Scholar]
  19. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993;10: 512– 526 [CrossRef] [PubMed]
    [Google Scholar]
  20. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  21. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J et al. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 1994;44: 812– 826 [CrossRef] [PubMed]
    [Google Scholar]
  22. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013;10: 563– 569 [CrossRef] [PubMed]
    [Google Scholar]
  23. Lee I, Chalita M, Ha SM, Na SI, Yoon SH et al. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int J Syst Evol Microbiol 2017;67: 2053– 2057 [CrossRef] [PubMed]
    [Google Scholar]
  24. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66: 1100– 1103 [CrossRef] [PubMed]
    [Google Scholar]
  25. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14: 14– 60 [CrossRef] [PubMed]
    [Google Scholar]
  26. Meier-Kolthoff JP, Klenk HP, Göker M. Taxonomic use of DNA G+C content and DNA–DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014;1: 352– 356
    [Google Scholar]
  27. Halebian S, Harris B, Finegold SM, Rolfe RD. Rapid method that aids in distinguishing Gram-positive from Gram-negative anaerobic bacteria. J Clin Microbiol 1981;13: 444– 448 [PubMed]
    [Google Scholar]
  28. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982;16: 584– 586 [PubMed]
    [Google Scholar]
  29. Kuykendall LD, Roy MA, O’Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Evol Microbiol 1988;38: 358– 361
    [Google Scholar]
  30. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66: 199– 202
    [Google Scholar]
  31. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13: 128– 130
    [Google Scholar]
  32. Rhuland LE, Work E, Denman RF, Hoare DS. The behavior of the isomers of α,ε-Diaminopimelic acid on paper chromatograms. J Am Chem Soc 1955;77: 4844– 4846
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003547
Loading
/content/journal/ijsem/10.1099/ijsem.0.003547
Loading

Data & Media loading...

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error