1887

Abstract

An actinomycete strain, designated 8-3EHSu, was isolated from surface-sterilised roots of , collected from Petchburi province, Thailand. Taxonomic position of strain 8-3EHSu was studied using a polyphasic approach. Phylogenetic determination based on the 16S rRNA gene sequence similarity showed that strain 8-3EHSu belongs to the genus , with the highest sequence similarity to KLBMP 1262 (96.9 %). The colony of strain 8-3EHSu was yellowish white. Long straight mycelium breaking down into fragments were observed. Growth occurred at temperatures 15–45 °C and at pH 6.0–10.0. The strain contained -diaminopimelic acid, arabinose, galactose and mannose in whole-organism hydrolysates. The predominant menaquinone was MK-9(H). The major fatty acids were C, iso-C and iso-C. Polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, hydroxyphosphatidylethanolamine, two unknown amino lipids and an unknown lipid. The G+C content of genomic DNA was 71.8 mol%. A phylogenetic tree based on 16S rRNA sequences showed that the strain 8-3EHSu formed a distinct evolutionary linage within the genus . Based on analysis results of physiological, biochemical and chemotaxonomic data, strain 8-3EHSu represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 8-3EHSu (=TBRC 8488=NBRC 113449).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003546
2019-08-01
2019-08-18
Loading full text...

Full text loading...

References

  1. Lechevalier MP, Prauser H, Labeda DP, Ruan J-S. Two new genera of nocardioform actinomycetes: Amycolata gen. nov. and Amycolatopsis gen. nov. Int J Syst Bacteriol 1986;36:29–37 [CrossRef]
    [Google Scholar]
  2. Lee SD. Amycolatopsis ultiminotia sp. nov., isolated from rhizosphere soil, and emended description of the genus Amycolatopsis. Int J Syst Evol Microbiol 2009;59:1401–1404 [CrossRef][PubMed]
    [Google Scholar]
  3. Tan GYA, Goodfellow M. Genus Amycolatopsis. In Goodfellow M, Kämpfer P, Busse HJ. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. New York: Springer; 2012; pp.1334–1358
    [Google Scholar]
  4. Lechevalier MP, De Bievre C, Lechevalier H. Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 1977;5:249–260 [CrossRef]
    [Google Scholar]
  5. Oyuntsetseg B, Cho SH, Jeon SJ, Lee HB, Shin KS et al. Amycolatopsis acidiphila sp. nov., a moderately acidophilic species isolated from coal mine soil. Int J Syst Evol Microbiol 2017;67:3387–3392 [CrossRef][PubMed]
    [Google Scholar]
  6. Lee SD, Kinkel LL, Samac DA. Amycolatopsis minnesotensis sp. nov., isolated from a prairie soil. Int J Syst Evol Microbiol 2006;56:265–269 [CrossRef][PubMed]
    [Google Scholar]
  7. Tamura T, Ishida Y, Otoguro M, Suzuki K. Amycolatopsis helveola sp. nov. and Amycolatopsis pigmentata sp. nov., isolated from soil. Int J Syst Evol Microbiol 2010;60:2629–2633 [CrossRef][PubMed]
    [Google Scholar]
  8. Nie GX, Ming H, Li S, Zhou EM, Cheng J et al. Amycolatopsis dongchuanensis sp. nov., an actinobacterium isolated from soil. Int J Syst Evol Microbiol 2012;62:2650–2656 [CrossRef][PubMed]
    [Google Scholar]
  9. Camas M, Sahin N, Sazak A, Spröer C, Klenk HP et al. Amycolatopsis magusensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2013;63:1254–1260 [CrossRef][PubMed]
    [Google Scholar]
  10. Souza WR, Silva RE, Goodfellow M, Busarakam K, Figueiro FS et al. Amycolatopsis rhabdoformis sp. nov., an actinomycete isolated from a tropical forest soil. Int J Syst Evol Microbiol 2015;65:1786–1793 [CrossRef][PubMed]
    [Google Scholar]
  11. Hayakawa M, Nonomura H. Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 1987;65:501–509 [CrossRef]
    [Google Scholar]
  12. Mingma R, Pathom-aree W, Trakulnaleamsai S, Thamchaipenet A, Duangmal K. Isolation of rhizospheric and roots endophytic actinomycetes from Leguminosae plant and their activities to inhibit soybean pathogen, Xanthomonas campestris pv. glycine. World J Microbiol Biotechnol 2014;30:271–280 [CrossRef][PubMed]
    [Google Scholar]
  13. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  14. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  15. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  16. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  17. Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  18. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  19. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16:313–340 [CrossRef]
    [Google Scholar]
  20. Mundie D. The NBS/ISCC Color System/David A Mundie Pittsburgh, PA: Polymath Systems 535.6 dc-20; 1995
    [Google Scholar]
  21. Gordon RE, Barnett DA, Handerhan JE, Pang CH-N. Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 1974;24:54–63 [CrossRef]
    [Google Scholar]
  22. Williams ST, Goodfellow M, Alderson G, Wellington EM, Sneath PH et al. Numerical classification of Streptomyces and related genera. J Gen Microbiol 1983;129:1743–1813 [CrossRef][PubMed]
    [Google Scholar]
  23. Gerhardt P, Murray RGE, Krieg NR, Wood WA. Methods for General and Molecular Bacteriology American Society for Microbiology; 1994
    [Google Scholar]
  24. Gordon RE, Mihm JM. A comparative study of some strains received as nocardiae. J Bacteriol 1957;73:15–27[PubMed]
    [Google Scholar]
  25. Becker B, Lechevalier MP, Lechevalier HA. Chemical composition of cell-wall preparations from strains of various form-genera of aerobic actinomycetes. Appl Microbiol 1965;13:236–243[PubMed]
    [Google Scholar]
  26. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983;29:319–322 [CrossRef]
    [Google Scholar]
  27. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974;28:226–231[PubMed]
    [Google Scholar]
  28. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  29. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  30. Minnikin DE, Patel PV, Alshamaony L, Goodfellow M. Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 1977;27:104–117 [CrossRef]
    [Google Scholar]
  31. Tomiyasu I. Mycolic acid composition and thermally adaptative changes in Nocardia asteroides. J Bacteriol 1982;151:828–837[PubMed]
    [Google Scholar]
  32. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984;25:125–128 [CrossRef]
    [Google Scholar]
  33. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  34. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  35. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013;29:1072–1075 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003546
Loading
/content/journal/ijsem/10.1099/ijsem.0.003546
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error