1887

Abstract

A novel propionate producing bacterium, strain JV5, was isolated from the rumen fibrous content of a Holstein Friesian dairy cow. Cells of strain JV5 were Gram-stain-positive, non-motile and aerotolerant. Growth occurred between 35 and 45 °C, with an optimum at 39 °C. The pH range for growth was 6.5–8, with an optimum at pH 7. The 16S rRNA gene sequence of strain JV5 was 98.4 and 96.5 % identical to those of DSM 15818 and DSM 21887, respectively. Genome wide average nucleotide identity and digital DNA–DNA hybridization values were 88.3 and 35.5 %, respectively, against DSM 15818. The G+C content of strain JV5 was 68.9  mol%. Strain JV5 did not produce urease and was able to metabolize glutamate, but not aspartate and glycine. Strain JV5 was able to ferment a range of substrates including certain simple and complex carbohydrates, sugar alcohols and amino acids. Chemotaxonomic analysis of strain JV5 revealed the presence of diamino pimelic acid isomers similar those found in , but different from The observed major (>10 %) cellular fatty acids in strain JV5 (C ω9, anteiso-C, C, C and C alcohol) were also different from those observed in and . Based on these findings, a novel species is proposed within the genus , sp. nov. (type strain JV5=DSM 106771=TISTR 2629).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003544
2019-08-01
2019-08-18
Loading full text...

Full text loading...

References

  1. Goodfellow M, Williams ST. Ecology of actinomycetes. Annu Rev Microbiol 1983;37:189–216 [CrossRef][PubMed]
    [Google Scholar]
  2. Orla-Jensen S. Die hauptlinien des naturlichen Bakteriensystems, Zentralblaat fur Bacteriologie usw, Abt. 2. pp.305–346
    [Google Scholar]
  3. Lucena-Padrós H, González JM, Caballero-Guerrero B, Ruiz-Barba JL, Maldonado-Barragán A. Propionibacterium olivae sp. nov. and Propionibacterium damnosum sp. nov., isolated from spoiled packaged Spanish-style green olives. Int J Syst Evol Microbiol 2014;64:2980–2985 [CrossRef][PubMed]
    [Google Scholar]
  4. Merry RJ, Davies DR. Propionibacteria and their role in the biological control of aerobic spoilage in silage. Lait 1999;79:149–164 [CrossRef]
    [Google Scholar]
  5. Scholz CF, Kilian M. The natural history of cutaneous propionibacteria, and reclassification of selected species within the genus Propionibacterium to the proposed novel genera Acidipropionibacterium gen. nov., Cutibacterium gen. nov. and Pseudopropionibacterium gen. nov. Int J Syst Evol Microbiol 2016;66:4422–4432 [CrossRef][PubMed]
    [Google Scholar]
  6. Goodfellow M, Maldonado LA. Genus 1. Nocardia Trevisan 1889AL. In Goodfellow M, Kämpfer P, 306 Busse HJ, Trujillo M, Suszuki KI et al. (editors) Bergey’s Manual 305 of Systematic Bacteriologyvol. 5 New York: Springer; 2012; pp.376–419
    [Google Scholar]
  7. Hennessy AA, Barrett E, Paul Ross R, Fitzgerald GF, Devery R et al. The production of conjugated α-linolenic, γ-linolenic and stearidonic acids by strains of bifidobacteria and propionibacteria. Lipids 2012;47:313–327 [CrossRef][PubMed]
    [Google Scholar]
  8. Raeth-Knight ML, Linn JG, Jung HG. Effect of direct-fed microbials on performance, diet digestibility, and rumen characteristics of Holstein dairy cows. J Dairy Sci 2007;90:1802–1809 [CrossRef][PubMed]
    [Google Scholar]
  9. Elghandour MMY, Salem AZM, Castañeda JSM, Camacho LM, Kholif AE et al. Direct-fed microbes: a tool for improving the utilization of low quality roughages in ruminants. J Integr Agric 2015;14:526–533 [CrossRef]
    [Google Scholar]
  10. Wolin MJ. A theoretical rumen fermentation balance. J Dairy Sci 1960;43:1452–1459 [CrossRef]
    [Google Scholar]
  11. Dean JF, Middelburg JJ, Röckmann T, Aerts R, Blauw LG et al. Methane feedbacks to the global climate system in a warmer world. Rev Geophys 2018;56:207–250 [CrossRef]
    [Google Scholar]
  12. van Gastelen S, Antunes-Fernandes EC, Hettinga KA, Klop G, Alferink SJ et al. Enteric methane production, rumen volatile fatty acid concentrations, and milk fatty acid composition in lactating Holstein-Friesian cows fed grass silage- or corn silage-based diets. J Dairy Sci 2015;98:1915–1927 [CrossRef][PubMed]
    [Google Scholar]
  13. Stams AJ, van Dijk JB, Dijkema C, Plugge CM. Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. Appl Environ Microbiol 1993;59:1114–1119[PubMed]
    [Google Scholar]
  14. Alterskjær OM, Svein MD. The bacterial population adherent to plant particles in the rumen of reindeer fed lichen, timothy hay or silage. Rangifer 1998;18
    [Google Scholar]
  15. Vaidya JD, van den Bogert B, Edwards JE, Boekhorst J, van Gastelen S et al. The effect of DNA extraction methods on observed microbial communities from fibrous and liquid rumen fractions of dairy cows. Front Microbiol 2018;9:92 [CrossRef][PubMed]
    [Google Scholar]
  16. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics New York, USA: Wiley; 1991; pp.115–175
    [Google Scholar]
  17. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  18. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  19. Rosselló-Móra R, Amann R. Past and future species definitions for bacteria and archaea. Syst Appl Microbiol 2015;38:209–216 [CrossRef][PubMed]
    [Google Scholar]
  20. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 2011;17:10 [CrossRef]
    [Google Scholar]
  21. Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 2011;27:863–864 [CrossRef][PubMed]
    [Google Scholar]
  22. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008;18:821–829 [CrossRef][PubMed]
    [Google Scholar]
  23. Huson DH, Mitra S, Ruscheweyh HJ, Weber N, Schuster SC. Integrative analysis of environmental sequences using MEGAN4. Genome Res 2011;21:1552–1560 [CrossRef][PubMed]
    [Google Scholar]
  24. Koehorst JJ, van Dam JCJ, Saccenti E, Martins dos Santos VAP, Suarez-Diez M et al. SAPP: functional genome annotation and analysis through a semantic framework using FAIR principles. Bioinformatics 2018;34:1401–1403 [CrossRef][PubMed]
    [Google Scholar]
  25. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  26. Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res 2015;43:6761–6771 [CrossRef][PubMed]
    [Google Scholar]
  27. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  28. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  29. Aubin GG, Bémer P, Kambarev S, Patel NB, Lemenand O et al. Propionibacterium namnetense sp. nov., isolated from a human bone infection. Int J Syst Evol Microbiol 2016;66:3393–3399 [CrossRef][PubMed]
    [Google Scholar]
  30. Plugge CM, Zoetendal EG, Stams AJ. Caloramator coolhaasii sp. nov., a glutamate-degrading, moderately thermophilic anaerobe. Int J Syst Evol Microbiol 2000;50:1155–1162 [CrossRef][PubMed]
    [Google Scholar]
  31. van Lingen HJ, Edwards JE, Vaidya JD, van Gastelen S, Saccenti E et al. Diurnal dynamics of gaseous and dissolved metabolites and microbiota composition in the bovine rumen. Front Microbiol 2017;8:425 [CrossRef][PubMed]
    [Google Scholar]
  32. Rhuland LE, Work E, Denman RF, Hoare DS. The behavior of the isomers of α,ε-diaminopimelic acid on paper chromatograms. J Am Chem Soc 1955;77:4844–4846 [CrossRef]
    [Google Scholar]
  33. Bernard KA, Shuttleworth L, Munro C, Forbes-Faulkner JC, Pitt D et al. Propionibacterium australiense sp. nov. derived from granulomatous bovine lesions. Anaerobe 2002;8:41–47 [CrossRef]
    [Google Scholar]
  34. Downes J, Wade WG. Propionibacterium acidifaciens sp. nov., isolated from the human mouth. Int J Syst Evol Microbiol 2009;59:2778–2781 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003544
Loading
/content/journal/ijsem/10.1099/ijsem.0.003544
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error