1887

Abstract

A novel actinobacterial strain, designated 16K104, was isolated from desert soil collected from the Karakum Desert and characterized using a polyphasic approach to clarify its taxonomic position. Strain 16K104 was found to have chemotaxonomic and morphological properties consistent with classification in the genus . The strain shared the highest 16S rRNA gene sequence similarity with BC640 (99.2 %), and formed a branch with YIM 31530 in the 16S rRNA gene phylogenetic tree. Multilocus sequence analysis (MLSA) using five housekeeping genes (, , , and ) for comparing the strain with all type strains showed that the MLSA distances of strain 16K104 to the closely related type strains of the genus were much higher than the 0.04 threshold. The organism was found to contain -diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan. The whole-cell sugars were identified as ribose and glucose. The major polar lipids were diphosphatidylglycerol, phosphatidylcholine, phosphatidylglycerol and phosphatidylinositol. The predominant menaquinone was MK-9(H). The major fatty acids were iso-C, anteiso-C0, iso-C and iso-C. The results of digital DNA–DNA hybridization and average nucleotide identity analyses, in addition to MLSA phylogenetic distances, confirmed that the strain represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 16K104 (=JCM 32914=KCTC 49224).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003538
2019-08-01
2019-08-19
Loading full text...

Full text loading...

References

  1. Park YH, Yoon JH, Shin YK, Suzuki K, Kudo T et al. Classification of 'Nocardioides fulvus' IFO 14399 and Nocardioides sp. ATCC 39419 in Kribbella gen. nov., as Kribbella flavida sp. nov. and Kribbella sandramycini sp. nov. Int J Syst Bacteriol 1999;49:743–752 [CrossRef][PubMed]
    [Google Scholar]
  2. Everest GJ, Curtis SM, de Leo F, Urzì C, Meyers PR. Description of Kribbella italica sp. nov., isolated from a Roman catacomb. Int J Syst Evol Microbiol 2015;65:491–496 [CrossRef][PubMed]
    [Google Scholar]
  3. Parte AC. LPSN - List of Prokaryotic names with Standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018;68:1825–1829 [CrossRef][PubMed]
    [Google Scholar]
  4. Song W, Duan L, Zhao J, Jiang S, Guo X et al. Kribbella monticola sp. nov., a novel actinomycete isolated from soil. Int J Syst Evol Microbiol 2018;68:3441–3446 [CrossRef][PubMed]
    [Google Scholar]
  5. Curtis SM, Norton I, Everest GJ, Meyers PR. Kribbella podocarpi sp. nov., isolated from the leaves of a yellowwood tree (Podocarpus latifolius). Antonie van Leeuwenhoek 2018;111:875–882 [CrossRef][PubMed]
    [Google Scholar]
  6. Evtushenko LI, Kribbella K. Genus IV. Kribbella. In Goodfellow M, Kampfer P, Busse HJ, Trujillo ME, Suzuki K et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 5 New York: Springer; 2012; pp.1268–1284
    [Google Scholar]
  7. Li WJ, Wang D, Zhang YQ, Xu LH, Jiang CL. Kribbella yunnanensis sp. nov., Kribbella alba sp. nov., two novel species of genus Kribbella isolated from soils in Yunnan, China. Syst Appl Microbiol 2006;29:29–35 [CrossRef][PubMed]
    [Google Scholar]
  8. Ozdemir-Kocak F, Isik K, Saricaoglu S, Saygin H, Inan-Bektas K et al. Kribbella sindirgiensis sp. nov. isolated from soil. Arch Microbiol 2017;199:1399–1407 [CrossRef][PubMed]
    [Google Scholar]
  9. Xu Z, Xu Q, Zheng Z, Huang Y. Kribbella amoyensis sp. nov., isolated from rhizosphere soil of a pharmaceutical plant, Typhonium giganteum Engl. Int J Syst Evol Microbiol 2012;62:1081–1085 [CrossRef][PubMed]
    [Google Scholar]
  10. Li D, Song J, Huang Y, Song S, Wu Y et al. Kribbella mirabilis sp. nov., isolated from rhizosphere soil of a herbaceous plant, Mirabilis jalapa L. Int J Syst Evol Microbiol 2015;65:3143–3147 [CrossRef][PubMed]
    [Google Scholar]
  11. Sun JQ, Xu L, Guo Y, Li WL, Shao ZQ et al. Kribbella deserti sp. nov., isolated from rhizosphere soil of Ammopiptanthus mongolicus. Int J Syst Evol Microbiol 2017;67:692–696 [CrossRef][PubMed]
    [Google Scholar]
  12. Everest GJ, Curtis SM, de Leo F, Urzì C, Meyers PR. Kribbella albertanoniae sp. nov., isolated from a Roman catacomb, and emended description of the genus Kribbella. Int J Syst Evol Microbiol 2013;63:3591–3596 [CrossRef][PubMed]
    [Google Scholar]
  13. Carlsohn MR, Groth I, Spröer C, Schütze B, Saluz HP et al. Kribbella aluminosa sp. nov., isolated from a medieval alum slate mine. Int J Syst Evol Microbiol 2007;57:1943–1947 [CrossRef][PubMed]
    [Google Scholar]
  14. Kaewkla O, Franco CM. Kribbella endophytica sp. nov., an endophytic actinobacterium isolated from the surface-sterilized leaf of a native apricot tree. Int J Syst Evol Microbiol 2013;63:1249–1253 [CrossRef][PubMed]
    [Google Scholar]
  15. Song J, Kim BY, Hong SB, Cho HS, Sohn K et al. Kribbella solani sp. nov. and Kribbella jejuensis sp. nov., isolated from potato tuber and soil in Jeju, Korea. Int J Syst Evol Microbiol 2004;54:1345–1348 [CrossRef][PubMed]
    [Google Scholar]
  16. Kaewkla O, Franco CM. Kribbella pittospori sp. nov., an endophytic actinobacterium isolated from the surface-sterilized stem of an Australian native apricot tree, Pittosporum angustifolium. Int J Syst Evol Microbiol 2016;66:2284–2290 [CrossRef][PubMed]
    [Google Scholar]
  17. Hayakawa M, Nonomura H. Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 1987;65:501–509 [CrossRef]
    [Google Scholar]
  18. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16:313–340 [CrossRef]
    [Google Scholar]
  19. Jones KL. Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 1949;57:141–145[PubMed]
    [Google Scholar]
  20. Waksman SA. The Actinomycetes. A summary of current knowledge New York: Ronald Press; 1967
    [Google Scholar]
  21. Waksman SA. The Actinomycetes. Vol. II. Classification, identification and descriptions of genera and species Baltimore: Williams & Wilkins; 1961
    [Google Scholar]
  22. Kelly KL. Color-Name Charts Illustrated with Centroid Colors Chicago, USA: Inter-Society Color Council-National Bureau of Standards; 1964
    [Google Scholar]
  23. Nash P, Krent M. Culture media. In Ballows AHW, Herrmann KL, Isenberg HD, Shadomy HJ. (editors) Manual of Clinical Microbiology, 5th ed. Washington, DC: American Society for Microbiology; 1991; pp.1268–1270
    [Google Scholar]
  24. Williams ST, Goodfellow M, Alderson G, Wellington EM, Sneath PH et al. Numerical classification of Streptomyces and related genera. J Gen Microbiol 1983;129:1743–1813 [CrossRef][PubMed]
    [Google Scholar]
  25. Goodfellow M. Numerical taxonomy of some nocardioform bacteria. J Gen Microbiol 1971;69:33–80 [CrossRef][PubMed]
    [Google Scholar]
  26. Gordon RE, Barnett DA, Handerhan JE, Pang CH. Nocardia coeliaca, Nocardia autotrophica, and the Nocardin Strain. Int J Syst Bacteriol 1974;24:54–63 [CrossRef]
    [Google Scholar]
  27. Kuester E, Williams ST. Production of hydrogen sulfide by streptomycetes and methods for its detection. Appl Microbiol 1964;12:46–52[PubMed]
    [Google Scholar]
  28. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974;28:226–231[PubMed]
    [Google Scholar]
  29. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970;20:435–443 [CrossRef]
    [Google Scholar]
  30. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark: Microbial ID, Inc; 1990
    [Google Scholar]
  31. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996;42:989–1005 [CrossRef]
    [Google Scholar]
  32. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  33. Collins MD. Isoprenoid quinone analyses in bacterial classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985; pp.267–284
    [Google Scholar]
  34. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991;173:697–703 [CrossRef][PubMed]
    [Google Scholar]
  35. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  36. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  37. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  38. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008;9:75 [CrossRef][PubMed]
    [Google Scholar]
  39. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  40. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  41. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  42. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  43. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  44. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T et al. Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res 2017;45:D535–D542 [CrossRef][PubMed]
    [Google Scholar]
  45. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef]
    [Google Scholar]
  46. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016;32:929–931 [CrossRef][PubMed]
    [Google Scholar]
  47. Blin K, Wolf T, Chevrette MG, Lu X, Schwalen CJ et al. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res 2017;45:W36–W41 [CrossRef][PubMed]
    [Google Scholar]
  48. Curtis SM, Meyers PR. Multilocus sequence analysis of the actinobacterial genus Kribbella. Syst Appl Microbiol 2012;35:441–446 [CrossRef][PubMed]
    [Google Scholar]
  49. Kirby BM, Everest GJ, Meyers PR. Phylogenetic analysis of the genus Kribbella based on the gyrB gene: proposal of a gyrB-sequence threshold for species delineation in the genus Kribbella. Antonie van Leeuwenhoek 2010;97:131–142 [CrossRef][PubMed]
    [Google Scholar]
  50. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  51. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  52. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  53. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  54. He X, Li M, Song S, Wu X, Zhang J et al. Ficellomycin: an aziridine alkaloid antibiotic with potential therapeutic capacity. Appl Microbiol Biotechnol 2018;102:4345–4354 [CrossRef][PubMed]
    [Google Scholar]
  55. Argoudelis AD, Reusser F, Whaley HA, Baczynskyj L, Mizsak SA et al. Antibiotics produced by Streptomyces ficellus. I. Ficellomycin. J Antibiot 1976;29:1001–1006 [CrossRef][PubMed]
    [Google Scholar]
  56. Kozubek A, Tyman JH. Bioactive phenolic lipids. In Rahman A. (editor) Studies in Natural Products Chemistry Amsterdam: Elsevier BV; 2005; pp.119–190
    [Google Scholar]
  57. Rosselló-Móra R, Trujillo ME, Sutcliffe IC. Introducing a digital protologue: a timely move towards a database-driven systematics of archaea and bacteria. Antonie van Leeuwenhoek 2017;110:455–456 [CrossRef][PubMed]
    [Google Scholar]
  58. Jukes TH, Cantor CR. Evolution of protein molecules, Mammalian Protein Metabolism. New York: Academic Press, and the serial number of the following literature is incremented; 1969; pp.21–132
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003538
Loading
/content/journal/ijsem/10.1099/ijsem.0.003538
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error