1887

Abstract

A novel Gram-stain-negative bacterium, strain CY03, was isolated from sediment of the Yellow Sea, PR China. Cells of strain CY03 were rods, aerobic and non-flagellated. Growth occurred at 5–40 °C (optimum, 30 °C), pH 5.5–9.5 (pH 7.5) and with 0.5–9.0 % NaCl (1.5–2.0 %). The 16S rRNA gene sequence comparison showed affiliation to the family with (97.0 %) as the most closely related species, followed by members of the genus , (96.8 %) and (96.7 %). The major cellular fatty acids were cyclo-C 8, C, summed feature 8 (C 7 and/or C 6) and 11-methyl C 7. The polar lipids consisted of phosphatidylcholine, phosphatidylglycerol, one unidentified phospholipid, one unidentified aminolipid and five unidentified lipids. The predominant respiratory quinone was Q-10. The DNA G+C content of the type strain was 62.8 mol%. Based on the results of the polyphasic characterization for strain CY03, it represents a novel species of a novel genus of the family , for which the name gen. nov., sp. nov. is proposed. The type strain is CY03 (=CCTCC AB 2017195=KCTC 62198).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003536
2019-08-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/8/2541.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003536&mimeType=html&fmt=ahah

References

  1. Liu C, Zhang XY, Su HN, Zhou MY, Chen B et al. Puniceibacterium antarcticum gen. nov., sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2014; 64:1566–1572 [View Article][PubMed]
    [Google Scholar]
  2. Zhang DC, Neuner K, Wu J, Yao J, Margesin R. Puniceibacterium sediminis sp. nov., from intertidal sediment. Int J Syst Evol Microbiol 2015; 65:1462–1466 [View Article][PubMed]
    [Google Scholar]
  3. Park S, Jung YT, Park JM, Yoon JH. Puniceibacterium confluentis sp. nov., isolated from the junction between the ocean and a freshwater spring, and emended description of the genus Puniceibacterium . Int J Syst Evol Microbiol 2017; 67:3480–3484 [View Article][PubMed]
    [Google Scholar]
  4. Lai Q, Li G, Liu X, du Y, Sun F et al. Pseudooceanicola atlanticus gen. nov. sp. nov., isolated from surface seawater of the Atlantic Ocean and reclassification of Oceanicola batsensis, Oceanicola marinus, Oceanicola nitratireducens, Oceanicola nanhaiensis, Oceanicola antarcticus and Oceanicola flagellatus, as Pseudooceanicola batsensis comb. nov., Pseudooceanicola marinus comb. nov., Pseudooceanicola nitratireducens comb. nov., Pseudooceanicola nanhaiensis comb. nov., Pseudooceanicola antarcticus comb. nov., and Pseudooceanicola flagellatus comb. nov. Antonie van Leeuwenhoek 2015; 107:1065–1074 [View Article][PubMed]
    [Google Scholar]
  5. Cho JC, Giovannoni SJ. Oceanicola granulosus gen. nov., sp. nov. and Oceanicola batsensis sp. nov., poly-beta-hydroxybutyrate-producing marine bacteria in the order 'Rhodobacterales'. Int J Syst Evol Microbiol 2004; 54:1129–1136 [View Article][PubMed]
    [Google Scholar]
  6. Lin KY, Sheu SY, Chang PS, Cho JC, Chen WM. Oceanicola marinus sp. nov., a marine alphaproteobacterium isolated from seawater collected off Taiwan. Int J Syst Evol Microbiol 2007; 57:1625–1629 [View Article][PubMed]
    [Google Scholar]
  7. Gu J, Guo B, Wang YN, Yu SL, Inamori R et al. Oceanicola nanhaiensis sp. nov., isolated from sediments of the South China Sea. Int J Syst Evol Microbiol 2007; 57:157–160 [View Article][PubMed]
    [Google Scholar]
  8. Zheng Q, Chen C, Wang Y-N, Jiao N. Oceanicola nitratireducens sp. nov., a marine alphaproteobacterium isolated from the South China Sea. Int J Syst Evol Microbiol 2010; 60:1655–1659 [View Article]
    [Google Scholar]
  9. Huo YY, Li ZY, You H, Wang CS, Post AF et al. Oceanicola antarcticus sp. nov. and Oceanicola flagellatus sp. nov., moderately halophilic bacteria isolated from seawater. Int J Syst Evol Microbiol 2014; 64:2975–2979 [View Article][PubMed]
    [Google Scholar]
  10. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM et al. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 2007 pp. 330–390
    [Google Scholar]
  11. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed]
    [Google Scholar]
  12. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  13. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  14. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  16. Rzhetsky A, Nei M. A simple method for estimating and testing minimum evolution trees. Molecular Biology and Evolution 1992; 9:945–967
    [Google Scholar]
  17. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  18. Lin CY, Zhang XY, Liu A, Liu C, Song XY et al. Marivirga atlantica sp. nov., isolated from seawater and emended description of the genus Marivirga . Int J Syst Evol Microbiol 2015; 65:1515–1519 [View Article][PubMed]
    [Google Scholar]
  19. Zhang YJ, Zhao JR, Zhang XY, Chen GZ, Zhou MY et al. Euzebyella marina sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2017; 67:920–924
    [Google Scholar]
  20. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1988; 19:161–207
    [Google Scholar]
  21. Huang MM, Guo LL, Wu YH, Lai QL, Shao ZZ et al. Pseudooceanicola lipolyticus sp. nov., a marine alphaproteobacterium, reclassification of Oceanicola flagellatus as Pseudooceanicola flagellatus comb. nov. and emended description of the genus Pseudooceanicola . Int J Syst Evol Microbiol 2018; 68:409–415 [View Article][PubMed]
    [Google Scholar]
  22. Murray RGE, Doetsch RN, Robinow F. Determinative and cytological light microscopy. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 21–41
    [Google Scholar]
  23. Leifson E. Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 1963; 85:1183–1184[PubMed]
    [Google Scholar]
  24. Zheng Q, Chen C, Wang YN, Jiao N. Oceanicola nitratireducens sp. nov., a marine alphaproteobacterium isolated from the South China Sea. Int J Syst Evol Microbiol 2010; 60:1655–1659 [View Article][PubMed]
    [Google Scholar]
  25. Lin KY, Sheu SY, Chang PS, Cho JC, Chen WM. Oceanicola marinus sp. nov., a marine alphaproteobacterium isolated from seawater collected off Taiwan. Int J Syst Evol Microbiol 2007; 57:1625–1629 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003536
Loading
/content/journal/ijsem/10.1099/ijsem.0.003536
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error