1887

Abstract

Strain 1, isolated in the 1970s from the thallus of the carrageenophytic red algae, , collected in Hawaii, USA, was characterized using a polyphasic method. Cells were Gram-stain-negative, strictly aerobic, non-flagellated, ovoid or rod-shaped and grew optimally at 20–25 °C, at pH 6–9 and with 2–4 % NaCl. Strain 1 used the seaweed polysaccharides ι-carrageenan, laminarin and alginic acid as sole carbon sources. The major fatty acids were C, C ω7 and summed feature 3 (C ω7 and/or iso-C 2OH) with significant amounts (>6 %) of C N alcohol and 10 methyl C. The respiratory quinone was Q-8 and major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and an unknown aminolipid. Phylogenetic analyses showed that the bacterium is affiliated to the genus (family , class ). Strain 1 exhibited 16S rRNA gene sequence similarity values of 98.8 and 99.2 % to the type strains of and respectively, and of 95.2–98.6 % to other species of the genus . The DNA G+C content of strain 1 was determined to be 43.9 mol%. Digital DNA–DNA hybridization predictions by the ANI and GGDC methods between strain 1 and other members of the genus showed values below 83 % and 30 %, respectively. The phenotypic, phylogenetic and genomic analyses show that strain 1 is distinct from species of the genus with validly published names and that it represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 1 (=ATCC 43554=RCC 5933=CIP 111645=DSM 106819).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003533
2019-08-01
2019-09-20
Loading full text...

Full text loading...

References

  1. Baumann L, Baumann P, Mandel M, Allen RD. Taxonomy of aerobic marine eubacteria. J Bacteriol 1972;110:402–429[PubMed]
    [Google Scholar]
  2. Bellion C, Yaphe W, Hamer GK. Analysis of kappa-iota hybrid carrageenans with kappa-carrageenase, iota-carrageenase and 13C NMR. In Levring T. (editor) Proc Int Seaweed Symp, 10th. Berlin and New York: Walter de Gruyter; 1981; pp.379–384
    [Google Scholar]
  3. Bellion C, Hamer GK, Yaphe W. The degradation of Eucheuma spinosum and Eucheuma cottonii carrageenans by ι-carrageenases and κ-carrageenases from marine bacteria. Can J Microbiol 1982;28:874–880 [CrossRef]
    [Google Scholar]
  4. Greer CW, Yaphe W. Purification and properties of ι-carrageenase from a marine bacterium. Can J Microbiol 1984;30:1500–1506 [CrossRef]
    [Google Scholar]
  5. Barbeyron T, Michel G, Potin P, Henrissat B, Kloareg B. iota-Carrageenases constitute a novel family of glycoside hydrolases, unrelated to that of kappa-carrageenases. J Biol Chem 2000;275:35499–35505 [CrossRef][PubMed]
    [Google Scholar]
  6. Michel G, Flament D, Barbeyron T, Vernet T, Kloareg B et al. Expression, purification, crystallization and preliminary X-ray analysis of the iota-carrageenase from Alteromonas fortis. Acta Crystallogr D Biol Crystallogr 2000;56:766–768 [CrossRef][PubMed]
    [Google Scholar]
  7. Michel G, Chantalat L, Fanchon E, Henrissat B, Kloareg B et al. The iota-carrageenase of Alteromonas fortis. A beta-helix fold-containing enzyme for the degradation of a highly polyanionic polysaccharide. J Biol Chem 2001;276:40202–40209 [CrossRef][PubMed]
    [Google Scholar]
  8. Michel G, Helbert W, Kahn R, Dideberg O, Kloareg B. The structural bases of the processive degradation of iota-carrageenan, a main cell wall polysaccharide of red algae. J Mol Biol 2003;334:421–433 [CrossRef][PubMed]
    [Google Scholar]
  9. Rebuffet E, Barbeyron T, Jeudy A, Jam M, Czjzek M et al. Identification of catalytic residues and mechanistic analysis of family GH82 ι-carrageenases. Biochemistry 2010;49:7590–7599 [CrossRef][PubMed]
    [Google Scholar]
  10. Jouanneau D, Boulenguer P, Mazoyer J, Helbert W. Enzymatic degradation of hybrid iota-/nu-carrageenan by Alteromonas fortis iota-carrageenase. Carbohydr Res 2010;345:934–940 [CrossRef][PubMed]
    [Google Scholar]
  11. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  12. Figueras MJ, Beaz-Hidalgo R, Hossain MJ, Liles MR. Taxonomic affiliation of new genomes should be verified using average nucleotide identity and multilocus phylogenetic analysis. Genome Announc 2014;2:e0092714 [CrossRef][PubMed]
    [Google Scholar]
  13. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  14. Ivanova EP, Ng HJ, Webb HK, Kurilenko VV, Zhukova NV et al. Alteromonas australica sp. nov., isolated from the Tasman Sea. Antonie van Leeuwenhoek 2013;103:877–884 [CrossRef][PubMed]
    [Google Scholar]
  15. Ivanova EP, López-Pérez M, Zabalos M, Nguyen SH, Webb HK et al. Ecophysiological diversity of a novel member of the genus Alteromonas, and description of Alteromonas mediterranea sp. nov. Antonie van Leeuwenhoek 2015;107:119–132 [CrossRef][PubMed]
    [Google Scholar]
  16. Zobell CE. Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J Mar Res 1941;4:42–75
    [Google Scholar]
  17. Powers EM. Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 1995;61:3756–3758[PubMed]
    [Google Scholar]
  18. Smibert RM, Krieg NR. General characterization. In Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA et al. (editors) Manual of Methods for General Bacteriology Washington, DC, USA: American Society for Microbiology; 1981; pp.409–443
    [Google Scholar]
  19. Thomas F, Barbeyron T, Michel G. Evaluation of reference genes for real-time quantitative PCR in the marine flavobacterium Zobellia galactanivorans. J Microbiol Methods 2011;84:61–66 [CrossRef][PubMed]
    [Google Scholar]
  20. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990;13:128–130 [CrossRef]
    [Google Scholar]
  21. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  22. Miller LT. A single derivatization method for bacterial fatty acid methyl esters including hydroxy acids. J Clin Microbiol 1982;16:584–586
    [Google Scholar]
  23. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988;38:358–361 [CrossRef]
    [Google Scholar]
  24. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol 1959;37:911–917 [CrossRef][PubMed]
    [Google Scholar]
  25. Tindall BJ, Sikorski J, Smibert RM, Kreig NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology, 3rd. Washington, DC, USA: ASM Press; 2007; pp.330–393
    [Google Scholar]
  26. Barbeyron T, Kean K, Forterre P. DNA adenine methylation of GATC sequences appeared recently in the Escherichia coli lineage. J Bacteriol 1984;160:586–590[PubMed]
    [Google Scholar]
  27. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008;18:821–829 [CrossRef][PubMed]
    [Google Scholar]
  28. Latreille P, Norton S, Goldman BS, Henkhaus J, Miller N et al. Optical mapping as a routine tool for bacterial genome sequence finishing. BMC Genomics 2007;8:321–329 [CrossRef][PubMed]
    [Google Scholar]
  29. Gordon D, Abajian C, Green P. Consed: a graphical tool for sequence finishing. Genome Res 1998;8:195–202 [CrossRef][PubMed]
    [Google Scholar]
  30. Hicks RE, Amann RI, Stahl DA. Dual staining of natural bacterioplankton with 4',6-diamidino-2-phenylindole and fluorescent oligonucleotide probes targeting kingdom-level 16S rRNA sequences. Appl Environ Microbiol 1992;58:2158–2163[PubMed]
    [Google Scholar]
  31. Kane MD, Poulsen LK, Stahl DA. Monitoring the enrichment and isolation of sulfate-reducing bacteria by using oligonucleotide hybridization probes designed from environmentally derived 16S rRNA sequences. Appl Environ Microbiol 1993;59:682–686[PubMed]
    [Google Scholar]
  32. Barbeyron T, Carpentier F, L'Haridon S, Schüler M, Michel G et al. Description of Maribacter forsetii sp. nov., a marine Flavobacteriaceae isolated from North Sea water, and emended description of the genus Maribacter. Int J Syst Evol Microbiol 2008;58:790–797 [CrossRef][PubMed]
    [Google Scholar]
  33. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 2002;30:3059–3066 [CrossRef][PubMed]
    [Google Scholar]
  34. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  35. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  36. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  37. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  38. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  39. Nei M, Kumar S. Molecular Evolution and Phylogenetics New York: Oxford University Press; 2000
    [Google Scholar]
  40. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstRAP. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  41. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  42. Pearson WR, Lipman DJ. Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 1988;85:2444–2448 [CrossRef][PubMed]
    [Google Scholar]
  43. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010;2:117–134 [CrossRef][PubMed]
    [Google Scholar]
  44. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  45. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013;195:413–418 [CrossRef][PubMed]
    [Google Scholar]
  46. Henrissat B, Davies G. Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 1997;7:637–644 [CrossRef][PubMed]
    [Google Scholar]
  47. Sinha RK, Krishnan KP, Singh A, Thomas FA, Jain A et al. Alteromonas pelagimontana sp. nov., a marine exopolysaccharide-producing bacterium isolated from the Southwest Indian Ridge. Int J Syst Evol Microbiol 2017;67:4032–4038 [CrossRef][PubMed]
    [Google Scholar]
  48. Martínez-Checa F, Béjar V, Llamas I, del Moral A, Quesada E. Alteromonas hispanica sp. nov., a polyunsaturated-fatty-acid-producing, halophilic bacterium isolated from Fuente de Piedra, southern Spain. Int J Syst Evol Microbiol 2005;55:2385–2390 [CrossRef][PubMed]
    [Google Scholar]
  49. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  50. Auch AF, Klenk HP, Göker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci 2010;2:142–148 [CrossRef][PubMed]
    [Google Scholar]
  51. Van Trappen S, Tan TL, Yang J, Mergaert J, Swings J. Alteromonas stellipolaris sp. nov., a novel, budding, prosthecate bacterium from Antarctic seas, and emended description of the genus Alteromonas. Int J Syst Evol Microbiol 2004;54:1157–1163 [CrossRef][PubMed]
    [Google Scholar]
  52. Ivanova EP, Bowman JP, Lysenko AM, Zhukova NV, Gorshkova NM et al. Alteromonas addita sp. nov. Int J Syst Evol Microbiol 2005;55:1065–1068 [CrossRef][PubMed]
    [Google Scholar]
  53. Park S, Kang CH, Won SM, Park JM, Kim BC et al. Alteromonas confluentis sp. nov., isolated from the junction between the ocean and a freshwater spring. Int J Syst Evol Microbiol 2015;65:3603–3608 [CrossRef][PubMed]
    [Google Scholar]
  54. Park S, Choi SJ, Park JM, Yoon JH. Alteromonas aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2017;67:2791–2797 [CrossRef][PubMed]
    [Google Scholar]
  55. Gauthier G, Gauthier M, Christen R. Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int J Syst Bacteriol 1995;45:755–761 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003533
Loading
/content/journal/ijsem/10.1099/ijsem.0.003533
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error