1887

Abstract

A bacterial strain designated FSY-15 was isolated from a freshwater mesocosm in Taiwan and characterised using a polyphasic taxonomic approach. Cells of strain FSY-15 were Gram-negative, aerobic, non-spore forming, non-motile rods and formed orange coloured colonies. Growth occurred at 20–30 °C (optimum, 25 °C), at pH 6–7.5 (optimum, pH 7) and with 0–0.5 % NaCl (optimum, 0 %). Phylogenetic analyses based on 16S rRNA gene sequences and coding sequences of 92 protein clusters indicated that strain FSY-15 formed a phylogenetic lineage in the the family Cytophagaceae . Strain FSY-15 was most closely related to the genera Pseudarcicella and Arcicella, and the levels of 16S rRNA gene sequence identity with respect to members of related genera are less than 94.1 %. Strain FSY-15 showed less than 68.8 % average nucleotide identity and less than 24.7 % digital DNA–DNA hybridisation identity compared to the type strains of related genera within the family Cytophagaceae . The predominant fatty acids were iso-C15 : 0, C16 : 1ω5c and the major hydroxyl fatty acid was iso-C15 : 0 3-OH. The major isoprenoid quinone was MK-7 and the DNA G+C content was 35.8 mol%. The major polar lipids were phosphatidylethanolamine and several uncharacterised aminophospholipid, aminolipid, phospholipid and lipid. The major polyamine was spermidine. On the basis of the genotypic and phenotypic data, strain FSY-15 represents a novel species of a new genus in the family Cytophagaceae , for which the name Sandaracinomonas limnophila gen. nov., sp. nov. is proposed. The type strain is FSY-15 (=BCRC 81011 =LMG 29732 =KCTC 52445).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003532
2019-06-14
2019-08-25
Loading full text...

Full text loading...

References

  1. Stanier RY. Studies on the Cytophagas. J Bacteriol 1940;40: 619– 635 [PubMed]
    [Google Scholar]
  2. Ludwig W, Euzéby J, Whitman WB. Taxonomic outlines of the phyla Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes. In Whitman W. (editor) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 4 Baltimore: Williams & Wilkins; 2011; pp. 21– 24
    [Google Scholar]
  3. Kang JY, Chun J, Choi A, Cho JC, Jahng KY. Nibrella saemangeumensis gen. nov., sp. nov. and Nibrella viscosa sp. nov., novel members of the family Cytophagaceae, isolated from seawater. Int J Syst Evol Microbiol 2013;63: 4508– 4514 [CrossRef] [PubMed]
    [Google Scholar]
  4. Liu Y, Du J, Lai Q, Dong C, Xie Y et al. Jiulongibacter sediminis gen. nov., sp. nov., a new member of the family Cytophagaceae, isolated from the surface sediment of the Jiulong River in China. Int J Syst Evol Microbiol 2016;66: 2347– 2353 [CrossRef] [PubMed]
    [Google Scholar]
  5. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991;173: 697– 703 [CrossRef] [PubMed]
    [Google Scholar]
  6. Anzai Y, Kudo Y, Oyaizu H. The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol 1997;47: 249– 251 [CrossRef] [PubMed]
    [Google Scholar]
  7. Chen WM, Laevens S, Lee TM, Coenye T, de Vos P et al. Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 2001;51: 1729– 1735 [CrossRef] [PubMed]
    [Google Scholar]
  8. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67: 1613– 1617 [CrossRef] [PubMed]
    [Google Scholar]
  9. Cole JR, Wang Q, Cardenas E, Fish J, Chai B et al. The Ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 2009;37: D141– D145 [CrossRef] [PubMed]
    [Google Scholar]
  10. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999;41: 95– 98
    [Google Scholar]
  11. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 2016;33: 1870– 1874 [CrossRef] [PubMed]
    [Google Scholar]
  12. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007;23: 2947– 2948 [CrossRef] [PubMed]
    [Google Scholar]
  13. Kimura M. The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; 1983
    [Google Scholar]
  14. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4: 406– 425 [CrossRef] [PubMed]
    [Google Scholar]
  15. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  16. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969;18: 1– 32 [CrossRef]
    [Google Scholar]
  17. Felsenstein J. PHYLIP (phylogeny inference package), version 3.5c. Distributed by the author Seattle, USA: Department of Genome Sciences, University of Washington; 1993
    [Google Scholar]
  18. Kämpfer P, Busse HJ, Longaric I, Rosselló-Móra R, Galatis H et al. Pseudarcicella hirudinis gen. nov., sp. nov., isolated from the skin of the medical leech Hirudo medicinalis. Int J Syst Evol Microbiol 2012;62: 2247– 2251 [CrossRef] [PubMed]
    [Google Scholar]
  19. Nikitin DI, Strömpl C, Oranskaya MS, Abraham WR. Phylogeny of the ring-forming bacterium Arcicella aquatica gen. nov., sp. nov. (ex Nikitin et al. 1994), from a freshwater neuston biofilm. Int J Syst Evol Microbiol 2004;54: 681– 684 [CrossRef] [PubMed]
    [Google Scholar]
  20. Kämpfer P, Lodders N, Busse HJ. Arcicella rosea sp. nov., isolated from tap water. Int J Syst Evol Microbiol 2009;59: 341– 344 [CrossRef] [PubMed]
    [Google Scholar]
  21. Sheu SY, Yang CS, Chen MH, Arun AB, Young CC et al. Arcicella aurantiaca sp. nov., isolated from stream water. Int J Syst Evol Microbiol 2010;60: 2979– 2983 [CrossRef] [PubMed]
    [Google Scholar]
  22. Chen WM, Yang SH, Young CC, Sheu SY. Arcicella rigui sp. nov., isolated from water of a wetland, and emended descriptions of the genus Arcicella, Arcicella aquatica, Arcicella rosea and Arcicella aurantiaca. Int J Syst Evol Microbiol 2013;63: 134– 140 [CrossRef] [PubMed]
    [Google Scholar]
  23. Larkin JM, Williams PM, Taylor R. Taxonomy of the genus Microcyclus Orskov 1928: reintroduction and emendation of the genus Spirosoma Migula 1894 and proposal of a new genus, Flectobacillus. Int J Syst Bacteriol 1977;27: 147– 156 [CrossRef]
    [Google Scholar]
  24. Hwang CY, Cho BC. Flectobacillus lacus sp. nov., isolated from a highly eutrophic pond in Korea. Int J Syst Evol Microbiol 2006;56: 1197– 1201 [CrossRef] [PubMed]
    [Google Scholar]
  25. Sheu SY, Chiu TF, Cho NT, Chou JH, Sheu DS et al. Flectobacillus roseus sp. nov., isolated from freshwater in Taiwan. Int J Syst Evol Microbiol 2009;59: 2546– 2551 [CrossRef] [PubMed]
    [Google Scholar]
  26. Ramaprasad EV, Sasikala C, Ramana C, Ch S, Chv R. Flectobacillus rhizosphaerae sp. nov., isolated from the rhizosphere soil of Oryza sativa (L.), and emended description of the genus Flectobacillus. Int J Syst Evol Microbiol 2015;65: 3451– 3456 [CrossRef] [PubMed]
    [Google Scholar]
  27. Chen WM, Lin KR, Young CC, Sheu SY. Flectobacillus fontis sp. nov., isolated from a freshwater spring. Int J Syst Evol Microbiol 2017;67: 336– 342 [CrossRef] [PubMed]
    [Google Scholar]
  28. Sheu SY, Liu LP, Chen WM. Flectobacillus pallidus sp. nov., isolated from a freshwater spring. Int J Syst Evol Microbiol 2017;67: 1126– 1132 [CrossRef] [PubMed]
    [Google Scholar]
  29. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016;32: 3047– 3048 [CrossRef] [PubMed]
    [Google Scholar]
  30. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19: 455– 477 [CrossRef] [PubMed]
    [Google Scholar]
  31. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014;30: 2068– 2069 [CrossRef] [PubMed]
    [Google Scholar]
  32. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66: 1100– 1103 [CrossRef] [PubMed]
    [Google Scholar]
  33. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106: 19126– 19131 [CrossRef] [PubMed]
    [Google Scholar]
  34. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14: 60 [CrossRef] [PubMed]
    [Google Scholar]
  35. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57: 81– 91 [CrossRef] [PubMed]
    [Google Scholar]
  36. Na SI, Kim YO, Yoon SH, Ha SM, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018;56: 280– 285 [CrossRef] [PubMed]
    [Google Scholar]
  37. Beveridge TJ, Lawrence JR, Murray RGE. Sampling and staining for light microscopy. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp. 19– 33
    [Google Scholar]
  38. Powers EM. Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 1995;61: 3756– 3758 [PubMed]
    [Google Scholar]
  39. Chen WM, Xie PB, Hsu MY, Sheu SY. Parvibium lacunae gen. nov., sp. nov., a new member of the family Alcaligenaceae isolated from a freshwater pond. Int J Syst Evol Microbiol 2018;68: 1291– 1299 [CrossRef] [PubMed]
    [Google Scholar]
  40. Breznak JA, Costilow RN. Physicochemical factors in growth. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp. 309– 329
    [Google Scholar]
  41. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparativesystematic. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al. Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007; pp. 330– 393
    [Google Scholar]
  42. Wen CM, Tseng CS, Cheng CY, Li YK, Yk L. Purification, characterization and cloning of a chitinase from Bacillus sp. NCTU2. Biotechnol Appl Biochem 2002;35: 213– 219 [CrossRef] [PubMed]
    [Google Scholar]
  43. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000;50 Pt 5: 1861– 1868 [CrossRef] [PubMed]
    [Google Scholar]
  44. Nokhal T-H, Schlegel HG. Taxonomic study of Paracoccus denitrificans. Int J Syst Bacteriol 1983;33: 26– 37 [CrossRef]
    [Google Scholar]
  45. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  46. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994; pp. 121– 161
    [Google Scholar]
  47. Busse J, Auling G. Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 1988;11: 1– 8 [CrossRef]
    [Google Scholar]
  48. Busse H-J, Bunka S, Hensel A, Lubitz W. Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 1997;47: 698– 708 [CrossRef]
    [Google Scholar]
  49. Hamana K, Nakagawa Y. Polyamine distribution profiles in the eighteen genera phylogenetically located within the Flavobacterium-Flexibacter-Cytophaga complex. Microbios 2001;106: 7– 17 [PubMed]
    [Google Scholar]
  50. Collins MD. Isoprenoid quinones. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994; pp. 265– 309
    [Google Scholar]
  51. Ludwig W, Strunk O, Klugbauer S, Klugbauer N, Weizenegger M et al. Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 1998;19: 554– 568 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003532
Loading
/content/journal/ijsem/10.1099/ijsem.0.003532
Loading

Data & Media loading...

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error