1887

Abstract

Moutai-flavour Daqu is an important starter to support growth of microorganisms in the fermented process of Moutai-flavour liquor. A novel thermophilic microorganism, designated strain FBKL4.011, was isolated from Moutai-flavour Daqu samples collected from Guotai distillery in Renhuai, Guizhou province, south-west China. The strain could grow at 45–65 °C (optimum 45 °C). Based on polyphasic analysis, strain FBKL4.011 was affiliated to the genus . It formed abundant pale-yellow aerial and substrate mycelium, bearing single endospores (7.0–10.0 µm diameter) on branched long sporophores (5.0 µm diameter). The cell-wall peptidoglycan contained -diaminopimelic acid; ribose, glucose and mannose were the primary whole-cell sugars. The major fatty acids were iso-C, iso-C, anteiso-C and iso-C. The predominant menaquinone were MK-8 and MK-9. The polar phospholipids contained diphosphatidyl glycerol, phosphatidyl ethanolamine, one unidentified phospholipid and one unidentified lipid. The G+C content of the genome was 43.1 mol%. According to the 16S rRNA gene sequence analysis, strain FBKL4.011 was closely related to JCM 9688 (95.3 % sequence similarity), and other members within the family (less than 93.0 % sequence similarity). The DNA–DNA hybridisation data showed low relatedness between strain FBKL4.011 and JCM 9688, KCTC 9790, YIM 10002, RHA1(36.7±1.1 %, 30.0±1.2 %, 21.3±2.1 % % and 37.6±0.9 %, respectively). Based on data from the polyphasic analysis, strain FBKL4.011 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is FBKL4.011(=KCTC 43036=CICC 24504).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003528
2019-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/9/2709.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003528&mimeType=html&fmt=ahah

References

  1. Yoon JH, Kim IG, Shin YK, Park YH. Proposal of the genus Thermoactinomyces sensu stricto and three new genera, Laceyella, Thermoflavimicrobium and Seinonella, on the basis of phenotypic, phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2005; 55:395–400 [View Article][PubMed]
    [Google Scholar]
  2. Matsuo Y, Katsuta A, Matsuda S, Shizuri Y, Yokota A et al. Mechercharimyces mesophilus gen. nov., sp. nov. and Mechercharimyces asporophorigenens sp. nov., antitumour substance-producing marine bacteria, and description of Thermoactinomycetaceae fam. nov. Int J Syst Evol Microbiol 2006; 56:2837–2842 [View Article][PubMed]
    [Google Scholar]
  3. Li J, Zhang GT, Yang J, Tian XP, Wang FZ et al. Marininema mesophilum gen. nov., sp. nov., a thermoactinomycete isolated from deep sea sediment, and emended description of the family Thermoactinomycetaceae . Int J Syst Evol Microbiol 2012; 62:1383–1388 [View Article][PubMed]
    [Google Scholar]
  4. Cross T, Goodfellow M. Taxonomy and classification of the actinomycetes. In Sykes G, Skinner FA. (editors) Actinomycetales: Characteristics and Practical Importance London: Academic Press; 1973 pp. 11–112
    [Google Scholar]
  5. Xian WD, Ming H, Wj L. The family Thermoactinomycetaceae— a review. Acta Microbiol. Sin. 2015; 55:1–11
    [Google Scholar]
  6. Krasil’ nikov NA, Agre NS. . A new actinomycete genus – Actinobifida n. gen. yellow group – Actinobifida dichotomica n. sp. Mikrobiologiya 1964; 33:935–943
    [Google Scholar]
  7. Wang X, Ban S, Hu B, Qiu S, Zhou H. Bacterial diversity of Moutai-flavour Daqu based on high-throughput sequencing method. J Inst Brew 2017; 123:138–143 [View Article]
    [Google Scholar]
  8. Zhang C, Ao Z, Chui W, Shen C, Tao W et al. Characterization of the aroma-active compounds in Daqu: a tradition Chinese liquor starter. Eur Food Res Technol 2012; 234:69–76 [View Article]
    [Google Scholar]
  9. Xiu L, Kunliang G, Hongxun Z. Determination of microbial diversity in Daqu, a fermentation starter culture of Maotai liquor, using nested PCR-denaturing gradient gel electrophoresis. World J Microbiol Biotechnol 2012; 28:2375–2381 [View Article][PubMed]
    [Google Scholar]
  10. Wang X-D, Ban S-D, Qiu S-Y. Analysis of the mould microbiome and exogenous enzyme production in Moutai-flavor Daqu. J Inst Brew 2018; 124:91–99 [View Article]
    [Google Scholar]
  11. Jiang Y, Duan SR, Tang SK, Chen HH, Wj L et al. The isolation methods of rare actinomycetes. Microbiol China 2006; 33:181–183
    [Google Scholar]
  12. Zhang J, Wh H, Tang SK, Zhou EM, Ming H et al. Diversity of culturable thermophilic actinobacteria and their producing cellulase activity in several dry-hot environments in Yunnan Province. Microbiol China 2013; 40:1109–1120
    [Google Scholar]
  13. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  14. Gram HC. Über die isolierte Färbung der schizomyceten in schnitt-und trockenpräparaten. Fortschritte Der Medizin 1884; 4:185–189
    [Google Scholar]
  15. Kelly KL. Inter-Society Color Council–National Bureau of Standards Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  16. Sangadkit W, Saeaung W, Boonyaprapasorn A, Thipayaratet A et al. Effect of nutrients in trypticase soy agar on growth kinetics of Salmonella spp. under micro-cultivation. Thai J. Agric. Sci 2011; 44:422–429
    [Google Scholar]
  17. Waksman SA. The Actinomycetes . Vol. II. Classification, Identification and Description of Genera and Species Baltimore: The Williams & Wilkins Company; 1961
    [Google Scholar]
  18. Waksman SA. The Actinomycetes. A Summary of Current Knowledge New York: Ronald Press; 1967
    [Google Scholar]
  19. Nie GX, Ming H, Li S, Zhou EM, Cheng J et al. Amycolatopsis dongchuanensis sp. nov., a novel actinobacterium isolated from dry-hot valley in Yunnan, south-west China. Int J Syst Evol Microbiol 2012; 62:2650–2656
    [Google Scholar]
  20. Nie GX, Ming H, Li S, Zhou EM, Cheng J et al. Geodermatophilus nigrescens sp. nov., isolated from a dry-hot valley. Antonie van Leeuwenhoek 2012; 101:811–817 [View Article][PubMed]
    [Google Scholar]
  21. Goodfellow M. Numerical taxonomy of some nocardioform bacteria. J Gen Microbiol 1971; 69:33–80 [View Article][PubMed]
    [Google Scholar]
  22. Williams ST, Goodfellow M, Alderson G, Wellington EM, Sneath PH et al. Numerical classification of Streptomyces and related genera. J Gen Microbiol 1983; 129:1743–1813 [View Article][PubMed]
    [Google Scholar]
  23. Dong XZ, Cai MY. Identification Guide for Common Bacteria Beijing: Science Press; 2001
    [Google Scholar]
  24. Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 1990; 20:16
    [Google Scholar]
  25. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  26. Tang SK, Wang Y, Chen Y, Lou K, Cao LL et al. Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella . Int J Syst Evol Microbiol 2009; 59:2025–2032 [View Article][PubMed]
    [Google Scholar]
  27. Tang SK, Wang Y, Lou K, Mao PH, Xu LH et al. Kocuria halotolerans sp. nov., an actinobacterium isolated from a saline soil in China. Int J Syst Evol Microbiol 2009; 59:1316–1320 [View Article][PubMed]
    [Google Scholar]
  28. Komagata K, Susuki K. Lipid and cell-wall systematics in bacterial systematics. Methods Microbiol 1987; 19:61–206
    [Google Scholar]
  29. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  30. Komagata K, Suzuki KI. 4 lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 1987; 19:161–207
    [Google Scholar]
  31. Kroppenstedt RM. Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  32. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996; 42:989–1005 [View Article]
    [Google Scholar]
  33. Wu X, Chen Q. Polyphasic taxonomy of a high temperature-tolerancing actinomyces strain. Southwest China J Agric Sci 2009; 22:525–527
    [Google Scholar]
  34. Burland TG. Dnastar's lasergene sequence analysis software. Methods Mol Biol 1999; 132:71–91
    [Google Scholar]
  35. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215:403–410 [View Article][PubMed]
    [Google Scholar]
  36. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  37. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  38. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  39. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  40. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 2003; 52:696–704 [View Article][PubMed]
    [Google Scholar]
  41. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution. Mol Biol Evol 2018; 35:1547–1549
    [Google Scholar]
  42. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  43. de Ley J, Cattoir H, Reynaerts A. The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 1970; 12:133–142 [View Article][PubMed]
    [Google Scholar]
  44. Huss VA, Festl H, Schleifer KH. Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 1983; 4:184–192 [View Article][PubMed]
    [Google Scholar]
  45. Jahnke K-D. Basic computer program for evaluation of spectroscopic DNA renaturation data from GILFORD SYSTEM 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 1992; 15:61–73 [View Article]
    [Google Scholar]
  46. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003528
Loading
/content/journal/ijsem/10.1099/ijsem.0.003528
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error