1887

Abstract

A novel Gram-stain-negative bacterium, designated as SCSIO 06110, was isolated from a deep-sea sediment of the West Pacific Ocean. Cells were 0.5–0.8 µm in width and 3.0–4.0 µm in length, spore-forming, rod-shaped with peritrichous flagella. Positive for catalase and urease, negative for oxidase and nitrate reduction. Growth occurred at 15–37 °C, pH 6–9 and 1–5 % (w/v) NaCl, with optimum growth at 28 °C, pH 7 and 3 % (w/v) NaCl. MK-7 was the only menaquinone. The strain possessed diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol and two unidentified phospholipids. Iso-C, iso-C and iso-C were the major fatty acids. The novel isolate clustered with genera in the family , but formed a separated branch with the closest relative J15A17 (91.1 % sequence similarity) when compared in a phylogenetic analysis of 16S rRNA gene sequences. The DNA G+C content of strain SCSIO 06110 was 38.5 mol%. Based on the polyphasic data presented, a new genus, gen. nov., is proposed in the family with the type species sp. nov. and the type strain SCSIO 06110 (=DSM 105158=CGMCC 1.16550).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003526
2019-11-01
2019-11-22
Loading full text...

Full text loading...

References

  1. Ash C, Priest FG, Collins MD. Molecular identification of rRNA group 3 Bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie Van Leeuwenhoek 1994;64:253–260 [CrossRef]
    [Google Scholar]
  2. Guo LY, Xia J, Ling SK, Chen GJ, Du ZJ. Marinicrinis sediminis gen. nov., sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2016;66:3725–3730 [CrossRef][PubMed]
    [Google Scholar]
  3. Saha P, Krishnamurthi S, Bhattacharya A, Sharma R, Chakrabarti T. Fontibacillus aquaticus gen. nov., sp. nov., isolated from a warm spring. Int J Syst Evol Microbiol 2010;60:422–428 [CrossRef][PubMed]
    [Google Scholar]
  4. Keita MB, Padhmanabhan R, Caputo A, Robert C, Delaporte E et al. Non-contiguous finished genome sequence and description of Gorillibacterium massiliense gen. nov, sp. nov., a new member of the family Paenibacillaceae. Stand Genomic Sci 2014;9:807–820 [CrossRef][PubMed]
    [Google Scholar]
  5. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J et al. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 1994;44:812–826 [CrossRef][PubMed]
    [Google Scholar]
  6. Kämpfer P, Rosselló-Mora R, Falsen E, Busse HJ, Tindall BJ. Cohnella thermotolerans gen. nov., sp. nov., and classification of 'Paenibacillus hongkongensis' as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol 2006;56:781–786 [CrossRef][PubMed]
    [Google Scholar]
  7. Touzel JP, O'Donohue M, Debeire P, Samain E, Breton C. Thermobacillus xylanilyticus gen. nov., sp. nov., a new aerobic thermophilic xylan-degrading bacterium isolated from farm soil. Int J Syst Evol Microbiol 2000;50 Pt 1:315–320 [CrossRef][PubMed]
    [Google Scholar]
  8. Zaitsev GM, Tsitko IV, Rainey FA, Trotsenko YA, Uotila JS et al. New aerobic ammonium-dependent obligately oxalotrophic bacteria: description of Ammoniphilus oxalaticus gen. nov., sp. nov. and Ammoniphilus oxalivorans gen. nov., sp. nov. Int J Syst Bacteriol 1998;48 Pt 1:151–163 [CrossRef][PubMed]
    [Google Scholar]
  9. Shida O, Takagi H, Kadowaki K, Komagata K. Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int J Syst Bacteriol 1996;46:939–946 [CrossRef][PubMed]
    [Google Scholar]
  10. Cao WR, Guo LY, Du ZJ, Das A, Saren G et al. Chengkuizengella sediminis gen. nov. sp. nov., isolated from sediment. Int J Syst Evol Microbiol 2017;67:2672–2678 [CrossRef][PubMed]
    [Google Scholar]
  11. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Microbiology Washington, DC: American Society for Microbiology; 1994; pp.611–654
    [Google Scholar]
  12. Hamouda T, Shih AY, Baker JR. A rapid staining technique for the detection of the initiation of germination of bacterial spores. Lett Appl Microbiol 2002;34:86–90 [CrossRef][PubMed]
    [Google Scholar]
  13. Xu XW, Ren PG, Liu SJ, Wu M, Zhou PJ. Natrinema altunense sp. nov., an extremely halophilic archaeon isolated from a salt lake in Altun Mountain in Xinjiang, PR China. Int J Syst Evol Microbiol 2005;55:1311–1314 [CrossRef][PubMed]
    [Google Scholar]
  14. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (PR China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007;57:1424–1428 [CrossRef][PubMed]
    [Google Scholar]
  15. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978;24:710–715 [CrossRef][PubMed]
    [Google Scholar]
  16. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956;178:703 [CrossRef][PubMed]
    [Google Scholar]
  17. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966;45:493–496 [CrossRef][PubMed]
    [Google Scholar]
  18. Walsh PS, Metzger DA, Higuchi R. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 1991;10:506–513[PubMed]
    [Google Scholar]
  19. Rainey FA, Ward-Rainey N, Kroppenstedt RM, Stackebrandt E. The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 1996;46:1088–1092 [CrossRef][PubMed]
    [Google Scholar]
  20. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 1999;41:95–98
    [Google Scholar]
  21. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  22. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  23. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  24. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  25. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  26. Rzhetsky A, Nei M. A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 1992;9:945–967
    [Google Scholar]
  27. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef]
    [Google Scholar]
  28. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  29. Lechevalier MP, Lechevalier HA. The chemotaxonomy of actinomycetes. In Dietz A, Thayer DW, Arlington VA. (editors) Actinomycete Taxonomy Society for Industrial Microbiology; 1980; pp.227–291
    [Google Scholar]
  30. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Microbiol 1979;47:87–95
    [Google Scholar]
  31. Kroppenstedt RM. Separation of bacterial Menaquinones by HPLC using reverse phase (RP18) and a silver loaded Ion exchanger as stationary phases. J Liq Chromatogr 1982;5:2359–2367 [CrossRef]
    [Google Scholar]
  32. Athalye M, Noble WC, Minnikin DE. Analysis of cellular fatty acids by gas chromatography as a tool in the identification of medically important coryneform bacteria. J Appl Bacteriol 1985;58:507–512 [CrossRef][PubMed]
    [Google Scholar]
  33. Yarza P, Richter M, Peplies J, Euzeby J, Amann R et al. The all-species living tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 2008;31:241–250 [CrossRef][PubMed]
    [Google Scholar]
  34. Kämpfer P, Busse HJ, Glaeser SP. Marinicrinis lubricantis sp. nov., isolated from a coolant lubricant. Int J Syst Evol Microbiol 2018;68:1018–1022 [CrossRef][PubMed]
    [Google Scholar]
  35. Yoon JH, Oh HM, Yoon BD, Kang KH, Park YH. Paenibacillus kribbensis sp. nov. and Paenibacillus terrae sp. nov., bioflocculants for efficient harvesting of algal cells. Int J Syst Evol Microbiol 2003;53:295–301 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003526
Loading
/content/journal/ijsem/10.1099/ijsem.0.003526
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error