1887

Abstract

A Gram-stain-positive and catalase negative coccus, designated strain Gos25-1, isolated from a cotton flower ( L.) collected from Khao Wong district, Kalasin province, Thailand. The taxonomic position of this strain was systematically studied based upon polyphasic taxonomic methods. The strain was facultatively anaerobic and produced -lactic acid from glucose. The predominant cellular fatty acids were the straight-chain fatty acids Cω9 and C. According to 16S rRNA and phenylalanyl-tRNA synthase alpha subunit () gene sequence similarity, this strain was closely related to NBRC 100697, CIP 108559, NBRC 100477 and NBRC 100492 with 98.9–99.1 % and 77.0–82.0 % sequence similarities, respectively. Phylogenetic analysis indicated that strain Gos25-1 was clearly distinguished from closely related species of the genus . Draft genome of Gos25-1 had a size of 3.99 Mb which was contained 3788 coding sequences with G+C content of 42.4 mol%. The ANIb and a digital DNA–DNA hybridisation (dDDH) values between strain Gos25-1 and the closest related species NBRC 100697 were 73.65 and 21.10 %, respectively. According to polyphasic characterisation, this strain represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is Gos25-1 (=CIP 110956=LMG 29007=NBRC 111461=TISTR 2382).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003524
2019-08-01
2019-09-22
Loading full text...

Full text loading...

References

  1. Franz C, Holzapfel WH. The genus Enterococcus: biotechnological and safety issues. In Salminen S, von Wright A, Ouwehand A. (editors) Lactic Acid Bacteria: Microbiological and Functional Aspects, 3rd ed. New York: Marcel Dekker Inc; 2004; pp.199–247
    [Google Scholar]
  2. Švec P, Devriese LA. et al. Genus I. Enterococcus. In De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. New York: Springer; 2009; pp.594–606
    [Google Scholar]
  3. Švec P, Vandamme P, Bryndová H, Holochová P, Kosina M et al. Enterococcus plantarum sp. nov., isolated from plants. Int J Syst Evol Microbiol 2012;62:1499–1505 [CrossRef][PubMed]
    [Google Scholar]
  4. de Man JC, Rogosa M, Sharpe ME. A medium for the cultivation of lactobacilli. J Appl Bacteriol 1960;23:130–135 [CrossRef]
    [Google Scholar]
  5. Tanasupawat S, Thongsanit J, Okada S, Komagata K. Lactic acid bacteria isolated from soy sauce mash in Thailand. J Gen Appl Microbiol 2002;48:201–209 [CrossRef][PubMed]
    [Google Scholar]
  6. Hucker GJ, Conn HJ. Method of gram staining. N Y St Agric Exp Sta Tech Bull 1923;93:3–37
    [Google Scholar]
  7. Phalip V, Schmitt P, Diviès C. A method for screening diacetyl and acetoin-producing bacteria on agar plates. J Basic Microbiol 1994;34:277–280 [CrossRef]
    [Google Scholar]
  8. Barrow GI, Feltham RKA. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd ed. Cambridge: University Press, Cambridge; 1993; pp.21–45
    [Google Scholar]
  9. Okada S, Toyoda T, Kozaki M. An easy method for the determination of the optical types of lactic acid produced by lactic acid bacteria. Agric Biol Chem 1978;42:1781–1783
    [Google Scholar]
  10. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. DE: MIDI Inc; 1990
    [Google Scholar]
  11. Kämpfer P, Kroppenstedt RM. Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 1996;42:989–1005 [CrossRef]
    [Google Scholar]
  12. Yamada K, Komagata K. Taxonomic studies on coryneform bacteria. III. DNA base composition of coryneform bacteria. J Gen Appl Microbiol 1970;16:215–224
    [Google Scholar]
  13. Tamaoka J. Determination of DNA base composition. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994; pp.463–470
    [Google Scholar]
  14. Tamaoka J, Komagata K. Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 1984;25:125–128 [CrossRef]
    [Google Scholar]
  15. Versalovic J, Schneider M, de Bruijn FJ, Lupski JR. Genomic fingerprinting of bacteria using repetitive sequence-based polymerase reaction. Methods Mol Cell Biol 1994;5:25–40
    [Google Scholar]
  16. Gevers D, Huys G, Swings J. Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol Lett 2001;205:31–36 [CrossRef][PubMed]
    [Google Scholar]
  17. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: Wiley; 1991; pp.115–148
    [Google Scholar]
  18. Naser SM, Thompson FL, Hoste B, Gevers D, Dawyndt P et al. Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 2005;151:2141–2150 [CrossRef][PubMed]
    [Google Scholar]
  19. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  20. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  22. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  23. Nei M, Kumar S. Molecular Evolution and Phylogenetics New York: Oxford University Press; 2000
    [Google Scholar]
  24. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  25. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  26. Tanizawa Y, Fujisawa T, Nakamura Y. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication. Bioinformatics 2018;34:1037–1039 [CrossRef][PubMed]
    [Google Scholar]
  27. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  28. Richter M, Rosselló-Móra R, Oliver Glöckner F, Peplies J. JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics 2016;32:929–931 [CrossRef][PubMed]
    [Google Scholar]
  29. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60–14 [CrossRef][PubMed]
    [Google Scholar]
  30. Sistek V, Maheux AF, Boissinot M, Bernard KA, Cantin P et al. Enterococcus ureasiticus sp. nov. and Enterococcus quebecensis sp. nov., isolated from water. Int J Syst Evol Microbiol 2012;62:1314–1320 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003524
Loading
/content/journal/ijsem/10.1099/ijsem.0.003524
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error