1887

Abstract

A pale-yellow bacterial strain, designated S14-144, was isolated from tundra soil sampled near the Antarctic Peninsula, South Shetland Islands (62° 22′ 34″ S, 59° 42′ 34″ W). The cells were strictly aerobic, Gram-stain-positive, non-motile and coccoid-shaped. Growth occurred at 4–28 °C, at pH 5.0–9.0 and in the presence of 0–5 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain S14-144 formed a lineage within the genus and shared the highest 16S rRNA gene sequence similarity with 12Sc4-1 (96.5 %) and S20-107 (96.4 %). The average nucleotide identity value between the genomes of strain 14-144 and the type strain of the species, , was 72.0 % . The DNA G+C content of strain S14-144 was 61.6 mol% . The major cellular fatty acids of strain S14-144 were summed feature 3 (C 7 and/or C 6) and C. The strain contained MK-8(H4) as the predominant respiratory quinone, phosphatidylethanolamine and diphosphatidylglycerol as the major polar lipids, rhamnose, ribose and glucose as the major whole-cell sugars, and diaminopimelic acid as the diagnostic diamino acid in the cell-wall peptidoglycan. On the basis of the phylogenetic, phenotypic and chemotaxonomic analysis, strain S14-144 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is S14-144 (=CCTCC AB 2015345T=KCTC 39796)

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003507
2019-10-30
2019-11-19
Loading full text...

Full text loading...

References

  1. Yoshimi Y, Hiraishi A, Nakamura K, Nazunor K. Isolation and characterization of Microsphaera multipartita gen. nov., sp. nov., a polysaccharide-accumulating gram-positive bacterium from activated sludge. Int J Syst Bacteriol 1996;46: 519– 525 [CrossRef]
    [Google Scholar]
  2. Stackebrandt E, Rainey FA, Ward-Rainey NL. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 1997;47: 479– 491 [CrossRef]
    [Google Scholar]
  3. Tao TS, Yue YY, Chen WX, Chen WF. Proposal of Nakamurella gen. nov. as a substitute for the bacterial genus Microsphaera Yoshimi et al. 1996 and Nakamurellaceae fam. nov. as a substitute for the illegitimate bacterial family Microsphaeraceae Rainey et al. 1997. Int J Syst Evol Microbiol 2004;54: 999– 1000 [CrossRef] [PubMed]
    [Google Scholar]
  4. Kim KK, Lee KC, Lee JS. Nakamurella panacisegetis sp. nov. and proposal for reclassification of Humicoccus flavidus Yoon et al., 2007 and Saxeibacter lacteus Lee et al., 2008 as Nakamurella flavida comb. nov. and Nakamurella lactea comb. nov. Syst Appl Microbiol 2012;35: 291– 296 [CrossRef] [PubMed]
    [Google Scholar]
  5. Yoon JH, Kang SJ, Jung SY, Oh TK, Tk O. Humicoccus flavidus gen. nov., sp. nov., isolated from soil. Int J Syst Evol Microbiol 2007;57: 56– 59 [CrossRef] [PubMed]
    [Google Scholar]
  6. Kim SJ, Cho H, Joa JH, Hamada M, Ahn JH et al. Nakamurella intestinalis sp. nov., isolated from the faeces of Pseudorhynchus japonicus. Int J Syst Evol Microbiol 2017;67: 2970– 2974 [CrossRef] [PubMed]
    [Google Scholar]
  7. Liu SW, Li FN, Qi X, Xie YY, Sun CH. Nakamurella deserti sp. nov., isolated from rhizosphere soil of Reaumuria in the Taklamakan desert. Int J Syst Evol Microbiol 2019;69: 214– 219 [CrossRef] [PubMed]
    [Google Scholar]
  8. Tuo L, Li FN, Pan Z, Lou I, Guo M et al. Nakamurella endophytica sp. nov., a novel endophytic actinobacterium isolated from the bark of Kandelia candel. Int J Syst Evol Microbiol 2016;66: 1577– 1582 [CrossRef] [PubMed]
    [Google Scholar]
  9. Lane DJ. 16S/23S rRNA sequencing. Nucleic Acid Techniques in Bacterial Systematics 1991; pp. 115– 147
    [Google Scholar]
  10. Park MS, Jung SR, Lee MS, Kim KO, Do JO et al. Isolation and characterization of bacteria associated with two sand dune plant species, Calystegia soldanella and Elymus mollis. J Microbiol 2005;43: 219– 227 [PubMed]
    [Google Scholar]
  11. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62: 716– 721 [CrossRef] [PubMed]
    [Google Scholar]
  12. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17: 368– 376 [CrossRef] [PubMed]
    [Google Scholar]
  13. Kidd KK, Sgaramella-Zonta LA, Zonta S. Phylogenetic analysis: concepts and methods. Am J Hum Genet 1971;23: 235– 252 [PubMed]
    [Google Scholar]
  14. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4: 406– 425 [CrossRef] [PubMed]
    [Google Scholar]
  15. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39: 783– 791 [CrossRef] [PubMed]
    [Google Scholar]
  16. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012;1: 18 [CrossRef] [PubMed]
    [Google Scholar]
  17. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 2007;23: 673– 679 [CrossRef] [PubMed]
    [Google Scholar]
  18. Tice H, Mayilraj S, Sims D, Lapidus A, Nolan M et al. Complete genome sequence of Nakamurella multipartita type strain (Y-104). Stand Genomic Sci 2010;2: 168– 175 [CrossRef] [PubMed]
    [Google Scholar]
  19. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110: 1281– 1286 [CrossRef] [PubMed]
    [Google Scholar]
  20. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106: 19126– 19131 [CrossRef] [PubMed]
    [Google Scholar]
  21. Zuo G, Hao B. CVTree3 web server for whole-genome-based and alignment-free prokaryotic phylogeny and taxonomy. Genomics Proteomics Bioinformatics 2015;13: 321– 331 [CrossRef] [PubMed]
    [Google Scholar]
  22. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000;50 Pt 5: 1861– 1868 [CrossRef] [PubMed]
    [Google Scholar]
  23. Doetsch RN. Determinative methods of light microscopy. In Manual of Methods for General Bacteriology 1981; pp. 21– 33
    [Google Scholar]
  24. Yumoto I, Hirota K, Nodasak Y, Yokota Y, Hoshino T et al. nov., a psychrotolerant obligate alkaliphile that reduces an indigo dye. Int J Syst Evol Microbiol 2004;54: 2379– 2383
    [Google Scholar]
  25. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria. Proc R Soc Med 1965;59: 468– 469
    [Google Scholar]
  26. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 1966;45: 493– 496 [CrossRef] [PubMed]
    [Google Scholar]
  27. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100: 221– 230 [CrossRef] [PubMed]
    [Google Scholar]
  28. Xie CH, Yokota A. Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 2003;49: 345– 349 [CrossRef] [PubMed]
    [Google Scholar]
  29. Komagata K, Suzuki KI. Lipid and cell wall analysis in bacterial systematics. Methods Microbiol 1987;19: 161– 207
    [Google Scholar]
  30. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note.vol. 101 1990
    [Google Scholar]
  31. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2: 233– 241 [CrossRef]
    [Google Scholar]
  32. Lee SD, Park SK, Yun YW, Lee DW. Saxeibacter lacteus gen. nov., sp. nov., an actinobacterium isolated from rock. Int J Syst Evol Microbiol 2008;58: 906– 909 [CrossRef] [PubMed]
    [Google Scholar]
  33. França L, Albuquerque L, Zhang DC, Nouioui I, Klenk HP et al. Nakamurella silvestris sp. nov., an actinobacteriumisolated from alpine forest soil Int. J Syst Evol Microbiol 2016;66: 5460– 5464
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003507
Loading
/content/journal/ijsem/10.1099/ijsem.0.003507
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error