1887

Abstract

Strains 2B12, FVG1-MFV-O17 and FVG10-MFV-A16 were isolated from fresh water samples collected in Asia and Europe. The nucleotide sequences of the barcodes revealed that all three strains belonged to the same cluster within the genus . Using 13 housekeeping genes (, , , , , , , , , , , and ), multilocus sequence analysis confirmed the existence of a new clade. When the genome sequences of these three isolates and other species were compared, the DNA–DNA hybridization and average nucleotide identity values were found to be no more than 45.50 and 91.22 %, respectively. The closest relative species was . Genome comparisons also highlighted genetic traits differentiating the new strains from strains DSM 101947 (=CFBP 8607) and B16. Phenotypical tests were performed to distinguish the three strains from and other species. The name sp. nov. is proposed with strain 2B12 (=CFBP 8650=LMG 30903) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003497
2019-08-01
2019-08-25
Loading full text...

Full text loading...

References

  1. Ma B, Hibbing ME, Kim HS, Reedy RM, Yedidia I et al. Host range and molecular phylogenies of the soft rot enterobacterial genera pectobacterium and dickeya. Phytopathology 2007;97:1150–1163 [CrossRef][PubMed]
    [Google Scholar]
  2. Samson R, Legendre J, Richard C, Fischer-Le Saux M, Achouak W et al. Transfer of Pectobacterium chrysanthemi (Burkholder, 1953) Brenner, et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya da. Int J Syst Evol Microbiol2005:1415–1427
    [Google Scholar]
  3. Brady CL, Cleenwerck I, Denman S, Venter SN, Rodriguez-Palenzuela P et al. Proposal to reclassify Brenneria quercina (Hildebrand and Schroth 1967) Hauben, et al. 1999 into a new genus, Lonsdalea gen. nov., as Lonsdalea quercina comb. nov., descriptions of Lonsdalea quercina subsp. quercina comb. nov., Lonsdalea quercina subsp. ib. Int J Syst Evol Microbiol2012:1592–1602
    [Google Scholar]
  4. van der Wolf JM, Nijhuis EH, Kowalewska MJ, Saddler GS, Parkinson N et al. Dickeya solani sp. nov., a pectinolytic plant-pathogenic bacterium isolated from potato (Solanum tuberosum). Int J Syst Evol Microbiol 2014;64:768–774 [CrossRef][PubMed]
    [Google Scholar]
  5. Toth IK, van der Wolf JM, Saddler G, Lojkowska E, Hélias V et al. Dickeya species: an emerging problem for potato production in Europe. Plant Pathol 2011;60:385–399 [CrossRef]
    [Google Scholar]
  6. Parkinson N, Devos P, Pirhonen M, Elphinstone J. Dickeya aquatica sp. nov., isolated from waterways. Int J Syst Evol Microbiol 2014;64:2264–2266 [CrossRef][PubMed]
    [Google Scholar]
  7. Tian Y, Zhao Y, Yuan X, Yi J, Fan J et al. Dickeyafangzhongdai sp. nov., a plant-pathogenic bacterium isolated from pear trees (Pyrus pyrifolia). Int J Syst Evol Microbiol 2016;66:2831–2835 [CrossRef][PubMed]
    [Google Scholar]
  8. Zhang J, Hu J, Shen H, Zhang Y, Sun D et al. Genomic analysis of the Phalaenopsis pathogen Dickeya sp. PA1, representing the emerging species Dickeya fangzhongdai. BMC Genomics 2018;19:782 [CrossRef][PubMed]
    [Google Scholar]
  9. Alič Š., van Gijsegem F, Pédron J, Ravnikar M, Dreo T. Diversity within the novel Dickeya fangzhongdai sp., isolated from infected orchids, water and pears. Plant Pathol 2018;67:1612–1620
    [Google Scholar]
  10. Alič Š, Pédron J, Dreo T, van Gijsegem F. Genomic characterisation of the new Dickeya fangzhongdai species regrouping plant pathogens and environmental isolates. BMC Genomics 2019;20:34 [CrossRef][PubMed]
    [Google Scholar]
  11. Hugouvieux-Cotte-Pattat N, Jacot-des-Combes C, Briolay J. Dickeya lacustris sp. nov., a water-living pectinolytic bacterium isolated from lakes in France. Int J Syst Evol Microbiol 2019;69:721–726 [CrossRef][PubMed]
    [Google Scholar]
  12. Tan KH, Sheng KY, Chang CY, Yin WF, Chan KG. Draft genome sequence of a quorum-sensing Bacterium, Dickeya sp. Strain 2B12, Isolated from a Freshwater Lake. Genome Announc 2015;3:e01542 [CrossRef][PubMed]
    [Google Scholar]
  13. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  14. Hélias V, Hamon P, Huchet E, Wolf JVD, Andrivon D. Two new effective semiselective crystal violet pectate media for isolation of Pectobacterium and Dickeya. Plant Pathol 2012;61:339–345 [CrossRef]
    [Google Scholar]
  15. Faye P, Bertrand C, Pédron J, Barny MA. Draft genomes of "Pectobacterium peruviense" strains isolated from fresh water in France. Stand Genomic Sci 2018;13:27 [CrossRef][PubMed]
    [Google Scholar]
  16. Cigna J, Dewaegeneire P, Beury A, Gobert V, Faure D. A gapA PCR-sequencing assay for identifying the dickeya and pectobacterium potato pathogens. Plant Dis 2017;101:1278–1282 [CrossRef][PubMed]
    [Google Scholar]
  17. Glaeser SP, Kämpfer P. Multilocus sequence analysis (MLSA) in prokaryotic taxonomy. Syst Appl Microbiol 2015;38:237–245 [CrossRef][PubMed]
    [Google Scholar]
  18. De Vos P. Multilocus sequence determination and analysis. In Methods in Microbiology Academic Press; pp.385–407
    [Google Scholar]
  19. Sarfraz S, Riaz K, Oulghazi S, Cigna J, Sahi ST et al. Pectobacterium punjabense sp. nov., isolated from blackleg symptoms of potato plants in Pakistan. Int J Syst Evol Microbiol 2018;68:3551–3556 [CrossRef][PubMed]
    [Google Scholar]
  20. Oulghazi S, Cigna J, Lau YY, Moumni M, Chan KG et al. Transfer of the waterfall source isolate Pectobacterium carotovorum M022 to Pectobacterium fontis sp. nov., a deep-branching species within the genus Pectobacterium. Int J Syst Evol Microbiol 2019;69:470–475 [CrossRef][PubMed]
    [Google Scholar]
  21. Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for Bigger Datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  22. Blom J, Albaum SP, Doppmeier D, Pühler A, Vorhölter FJ et al. EDGAR: a software framework for the comparative analysis of prokaryotic genomes. BMC Bioinformatics 2009;10:154 [CrossRef][PubMed]
    [Google Scholar]
  23. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  24. Sarfraz S, Riaz K, Oulghazi S, Cigna J, Alam MW et al. First report of Dickeya dianthicola Causing blackleg disease on potato plants in Pakistan. Plant Dis 2018;2027 [CrossRef][PubMed]
    [Google Scholar]
  25. Alic S, van Gijsegem F, Pédron J, Ravnikar M, Dreo T. Diversity within the novel Dickeya fangzhongdai sp., isolated from infected orchids, water and pears. Plant pathology 2018
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003497
Loading
/content/journal/ijsem/10.1099/ijsem.0.003497
Loading

Data & Media loading...

Supplementary File 1

PDF

Supplementary File 2

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error