sp. nov., isolated from soil on the South Shetland Islands, Antarctica Free

Abstract

A Gram-stain-negative, non-motile, strictly aerobic, coccus-shaped bacterium, designated S14-83, was isolated from a soil sample collected from the South Shetland Islands of Antarctica. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the strain is a novel member of the genus , with as its closest relative (96.1 % similarity). The DNA G+C content of the strain was 61.1 mol% and the major respiratory quinone was MK-8. Major cellular fatty acids were summed feature 3 (Cω7/Cω6) and C. As well as containing glycophospholipid, aminophospholipids and glycolipid as major polar lipids, there were also some unknown polar lipids. The diagnostic diamino acid in the cell-wall peptidoglycan was ornithine, corroborating the assignment of the strain to the genus . Strain S14-83 was shown to be extremely resistant to gamma radiation (>10 kGy) and UV light (460 Jm). On the basis of phylogenetic, chemotaxonomic and phenotypic data presented here, strain S14-83 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is S14-83 (=CCTCC AB 2015449= DSM 105285 ).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003484
2019-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/12/3696.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003484&mimeType=html&fmt=ahah

References

  1. Brooks BW, Murray RGE. Nomenclature for "Micrococcus radiodurans" and other radiation-resistant cocci: Deinococcacae fam. nov. and Deinococcus gen. nov., including five species. Int J Syst Bacteriol 1981; 31:353–360 [View Article]
    [Google Scholar]
  2. Rainey FA, Nobre MF, Schumann P, Stackebrandt E, DaCosta MS. Phylogenetic diversity of the deinococci as determined by 16S ribosomal DNA sequence comparison. Int J Syst Bacteriol 1997; 47:510–514 [View Article][PubMed]
    [Google Scholar]
  3. Ferreira AC, Nobre MF, Rainey FA, Silva MT, Wait R et al. Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol 1997; 47:939–947 [View Article][PubMed]
    [Google Scholar]
  4. Suresh K, Reddy GS, Sengupta S, Shivaji S. Deinococcus indicus sp. nov., an arsenic-resistant bacterium from an aquifer in West Bengal, India. Int J Syst Evol Microbiol 2004; 54:457–461 [View Article][PubMed]
    [Google Scholar]
  5. de Groot A, Chapon V, Servant P, Christen R, Saux MF et al. Deinococcus deserti sp. nov., a gamma-radiation-tolerant bacterium isolated from the Sahara Desert. Int J Syst Evol Microbiol 2005; 55:2441–2446 [View Article][PubMed]
    [Google Scholar]
  6. Lai WA, Kämpfer P, Arun AB, Shen FT, Huber B et al. Deinococcus ficus sp. nov., isolated from the rhizosphere of Ficus religiosa L. Int J Syst Evol Microbiol 2006; 56:787–791 [View Article][PubMed]
    [Google Scholar]
  7. Ahmed I, Abbas S, Kudo T, Iqbal M, Fujiwara T et al. Deinococcus citri sp. nov., isolated from citrus leaf canker lesions. Int J Syst Evol Microbiol 2014; 64:4134–4140 [View Article][PubMed]
    [Google Scholar]
  8. Dong N, Li HR, Yuan M, Zhang XH, Yu Y. Deinococcus antarcticus sp. nov., isolated from soil. Int J Syst Evol Microbiol 2015; 65:331–335 [View Article][PubMed]
    [Google Scholar]
  9. Zhang YQ, Sun CH, Li WJ, Yu LY, Zhou JQ et al. Deinococcus yunweiensis sp. nov., a gamma- and UV-radiation-resistant bacterium from China. Int J Syst Evol Microbiol 2007; 57:370–375 [View Article][PubMed]
    [Google Scholar]
  10. Wang W, Mao J, Zhang Z, Tang Q, Xie Y et al. Deinococcus wulumuqiensis sp. nov., and Deinococcus xibeiensis sp. nov., isolated from radiation-polluted soil. Int J Syst Evol Microbiol 2010; 60:2006–2010 [View Article][PubMed]
    [Google Scholar]
  11. Srinivasan S, Lee JJ, Lim S, Joe M, Kim MK. Deinococcus humi sp. nov., isolated from soil. Int J Syst Evol Microbiol 2012; 62:2844–2850 [View Article][PubMed]
    [Google Scholar]
  12. Mattimore V, Battista JR. Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 1996; 178:633–637 [View Article][PubMed]
    [Google Scholar]
  13. Callegan RP, Nobre MF, McTernan PM, Battista JR, Navarro-González R et al. Description of four novel psychrophilic, ionizing radiation-sensitive Deinococcus species from alpine environments. Int J Syst Evol Microbiol 2008; 58:1252–1258 [View Article]
    [Google Scholar]
  14. Makarova KS, Omelchenko MV, Gaidamakova EK, Matrosova VY, Vasilenko A et al. Deinococcus geothermalis: the pool of extreme radiation resistance genes shrinks. PLoS One 2007; 2:e955 [View Article][PubMed]
    [Google Scholar]
  15. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: a Laboratory Manual, 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1989
    [Google Scholar]
  16. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  17. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  18. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  19. Fitch WM. toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  21. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120[PubMed]
    [Google Scholar]
  22. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  23. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10:563–569 [View Article][PubMed]
    [Google Scholar]
  24. Miller JR, Delcher AL, Koren S, Venter E, Walenz BP et al. Aggressive assembly of pyrosequencing reads with mates. Bioinformatics 2008; 24:2818–2824 [View Article][PubMed]
    [Google Scholar]
  25. Delcher AL, Harmon D, Kasif S, White O, Salzberg SL. Improved microbial gene identification with GLIMMER. Nucleic Acids Res 1999; 27:4636–4641 [View Article][PubMed]
    [Google Scholar]
  26. Doetsch RN. Determinative methods of light microscopy. In Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA et al. (editors) Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology; 1981 pp. 21–33
    [Google Scholar]
  27. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50:1861–1868 [View Article][PubMed]
    [Google Scholar]
  28. Bernardet JF, Nakagawa Y, Holmes B. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 2002; 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  29. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murra RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  30. Xie CH, Yokota A. Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 2003; 49:345–349[PubMed]
    [Google Scholar]
  31. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  32. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477[PubMed]
    [Google Scholar]
  33. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202
    [Google Scholar]
  34. Dong N, Li HR, Yuan M, Zhang XH, Yu Y. Deinococcus antarcticus sp. nov., isolated from soil. Int J Syst Evol Microbiol 2015; 65:331–335 [View Article][PubMed]
    [Google Scholar]
  35. Peng F, Zhang L, Luo X, Dai J, An H et al. Deinococcus xinjiangensis sp. nov., isolated from desert soil. Int J Syst Evol Microbiol 2009; 59:709–713 [View Article][PubMed]
    [Google Scholar]
  36. Callegan RP, Nobre MF, McTernan PM, Battista JR, Navarro-González R et al. Description of four novel psychrophilic, ionizing radiation-sensitive Deinococcus species from alpine environments. Int J Syst Evol Microbiol 2008; 58:1252–1258 [View Article][PubMed]
    [Google Scholar]
  37. Jeon SH, Kang MS, Joo ES, Kim EB, Lim S et al. Deinococcus persicinus sp. nov., a radiation-resistant bacterium from soil. Int J Syst Evol Microbiol 2016; 66:5077–5082 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003484
Loading
/content/journal/ijsem/10.1099/ijsem.0.003484
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed