sp. nov., sp. nov., sp. nov., sp. nov., sp. nov., sp. nov., sp. nov., sp. nov., sp. nov., sp. nov. and sp. nov., isolated from Chinese traditional pickle Free

Abstract

Thirty Gram-stain-positive bacterial strains were isolated from Chinese traditional pickle. The strains were characterized using a polyphasic taxonomic approach, including 16S rRNA gene sequence analysis, gene sequence analysis, gene sequence analysis, fatty acid methyl ester analysis, determination of DNA G+C content, determination of average nucleotide identity (ANI), DNA–DNA hybridization (DDH), determination of average amino acid identity (AAI) and an analysis of phenotypic features. The data demonstrated that the 30 strains represented 11 novel species belonging to the genus , strains 159-4, 47-3, 257-1, 187-3, 220-4, 151-2B, 137-3, 244-4, 218-10, 218-6 and 112-3 were designated as the type strains. Strains 159-4 and 47-3 were related to the type strains of , , , , , , and , having 92.0–98.9 % 16S rRNA gene sequence similarities, 58.1–84.7 %  gene sequence similarities and 61.4–90.3 %  gene sequence similarities. Strains 257-1 and 187-3 were related to the type strains of , , , and , having 93.5–99.3 % 16S rRNA gene sequence similarities, 67.7–81.8 %  gene sequence similarities and 77.0–96.2 %  gene sequence similarities. Strains 220-4, 151-2B, 137-3, 244-4, 218-10, 218-6 and 112-3 were closely related to the type strains of , , , , , , and , having 95.6–99.9 % 16S rRNA gene sequence similarities, less than 93.9 % gene sequence similarities and 87.0–99.7 %  gene sequence similarities. ANI, DDH and AAI values between strains 159-4, 47-3, 257-1, 187-3, 220-4, 151-2B, 137-3, 244-4, 218-10, 218-6, 112-3 and type strains of phylogenetically related species were less than 92.7, 48.4 and 96.6 %, respectively, confirming that they represent 11 novel species within the genus . Based upon the data of polyphasic characterization obtained in the present study, eleven novel species, sp. nov., sp. nov., sp. nov., sp. nov., sp. nov., sp. nov., sp. nov., sp. nov., sp. nov., sp. nov. and sp. nov., are proposed and the type strains are 159-4 (=NCIMB 15175=CCM 8911), 47-3 (=NCIMB 15165=CCM 8903=LMG 31064), 257-1 (=NCIMB 15166=CCM 8904=LMG 31065), 187-3 (=NCIMB 15172 =CCM 8910), 220-4 (=NCIMB 15163 =CCM 8902=KCTC 21136), 151-2B (=NCIMB 15164=CCM 8913=KCTC 21129=LMG 31063), 137-3 (=NCIMB 15170=CCM 8907=KCTC 21125=LMG 31053), 244-4 (=NCIMB 15168=CCM 8906=KCTC 21137=LMG 31052), 218-10 (=NCIMB 15167=CCM 8905=KCTC 21135 =LMG 31055), 218-6 (=NCIMB 15171=CCM 8908=KCTC 21134 =LMG 31067) and 112-3 (=NCIMB 15174=CCM 8909=KCTC 21123=LMG 31049), respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003474
2019-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/8/2340.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003474&mimeType=html&fmt=ahah

References

  1. Park KY, Kim BK. Lactic acid bacteria in vegetable fermentations. In Lahtinen S, Ouwehand AC, Salminen S, Von Wright A. (editors) Lactic Acid Bacteria: Microbiological and Functional Aspects, 4th ed. Boca Raton: CRC Press Taylor and Francis Group; 2012 pp. 187–211
    [Google Scholar]
  2. Miyamoto M, Seto Y, Hao DH, Teshima T, Sun YB et al. Lactobacillus harbinensis sp. nov., consisted of strains isolated from traditional fermented vegetables 'Suan cai' in Harbin, Northeastern China and Lactobacillus perolens DSM 12745. Syst Appl Microbiol 2005; 28:688–694 [View Article][PubMed]
    [Google Scholar]
  3. Gu CT, Wang F, Li CY, Liu F, Huo GC. Lactobacillus xiangfangensis sp. nov., isolated from Chinese pickle. Int J Syst Evol Microbiol 2012; 62:860–863 [View Article][PubMed]
    [Google Scholar]
  4. Gu CT, Li CY, Yang LJ, Huo GC. Lactobacillus heilongjiangensis sp. nov., isolated from Chinese pickle. Int J Syst Evol Microbiol 2013; 63:4094–4099 [View Article][PubMed]
    [Google Scholar]
  5. Gu CT, Li CY, Yang LJ, Huo GC. Lactobacillus mudanjiangensis sp. nov., Lactobacillus songhuajiangensis sp. nov. and Lactobacillus nenjiangensis sp. nov., isolated from Chinese traditional pickle and sourdough. Int J Syst Evol Microbiol 2013; 63:4698–4706 [View Article][PubMed]
    [Google Scholar]
  6. Li CY, Tian F, Zhao YD, Gu CT. Enterococcus xiangfangensis sp. nov., isolated from Chinese pickle. Int J Syst Evol Microbiol 2014; 64:1012–1017 [View Article][PubMed]
    [Google Scholar]
  7. An D, Cai S, Dong X. Actinomyces ruminicola sp. nov., isolated from cattle rumen. Int J Syst Evol Microbiol 2006; 56:2043–2048 [View Article][PubMed]
    [Google Scholar]
  8. Naser SM, Thompson FL, Hoste B, Gevers D, Dawyndt P et al. Application of multilocus sequence analysis (MLSA) for rapid identification of Enterococcus species based on rpoA and pheS genes. Microbiology 2005; 151:2141–2150 [View Article][PubMed]
    [Google Scholar]
  9. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994; 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  10. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  11. Kishino H, Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol 1989; 29:170–179 [View Article][PubMed]
    [Google Scholar]
  12. Rzhetsky A, Nei M. A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 1992; 9:945–967
    [Google Scholar]
  13. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article][PubMed]
    [Google Scholar]
  14. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  15. Naser SM, Dawyndt P, Hoste B, Gevers D, Vandemeulebroecke K et al. Identification of lactobacilli by pheS and rpoA gene sequence analyses. Int J Syst Evol Microbiol 2007; 57:2777–2789 [View Article][PubMed]
    [Google Scholar]
  16. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article][PubMed]
    [Google Scholar]
  17. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  18. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  19. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  20. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  21. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  22. Besemer J, Lomsadze A, Borodovsky M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res 2001; 29:2607–2618 [View Article][PubMed]
    [Google Scholar]
  23. Konstantinidis KT, Tiedje JM. Towards a genome-based taxonomy for prokaryotes. J Bacteriol 2005; 187:6258–6264 [View Article][PubMed]
    [Google Scholar]
  24. Miyashita M, Yukphan P, Chaipitakchonlatarn W, Malimas T, Sugimoto M et al. Lactobacillus plajomi sp. nov. and Lactobacillus modestisalitolerans sp. nov., isolated from traditional fermented foods. Int J Syst Evol Microbiol 2015; 65:2485–2490 [View Article][PubMed]
    [Google Scholar]
  25. Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 1983; 29:319–322 [View Article]
    [Google Scholar]
  26. Tak EJ, Kim HS, Lee JY, Kang W, Hyun DW et al. Vagococcus martis sp. nov., isolated from the small intestine of a marten, Martes flavigula . Int J Syst Evol Microbiol 2017; 67:3398–3402 [View Article][PubMed]
    [Google Scholar]
  27. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE, USA: Microbial ID Inc; 1990
    [Google Scholar]
  28. Tanasupawat S, Pakdeeto A, Thawai C, Yukphan P, Okada S. Identification of lactic acid bacteria from fermented tea leaves (miang) in Thailand and proposals of Lactobacillus thailandensis sp. nov., Lactobacillus camelliae sp. nov., and Pediococcus siamensis sp. nov. J Gen Appl Microbiol 2007; 53:7–15 [View Article][PubMed]
    [Google Scholar]
  29. Cai Y, Pang H, Kitahara M, Ohkuma M. Lactobacillus nasuensis sp. nov., a lactic acid bacterium isolated from silage, and emended description of the genus Lactobacillus . Int J Syst Evol Microbiol 2012; 62:1140–1144 [View Article][PubMed]
    [Google Scholar]
  30. Morlon-Guyot J, Guyot JP, Pot B, Jacobe de Haut I, Raimbault M. Lactobacillus manihotivorans sp. nov., a new starch-hydrolysing lactic acid bacterium isolated during cassava sour starch fermentation. Int J Syst Bacteriol 1998; 48 Pt 4:1101–1109 [View Article][PubMed]
    [Google Scholar]
  31. Nguyen DT, Cnockaert M, van Hoorde K, de Brandt E, Snauwaert I et al. Lactobacillus porcinae sp. nov., isolated from traditional Vietnamese nem chua. Int J Syst Evol Microbiol 2013; 63:1754–1759 [View Article][PubMed]
    [Google Scholar]
  32. Liu B, Dong X. Lactobacillus pantheris sp. nov., isolated from faeces of a jaguar. Int J Syst Evol Microbiol 2002; 52:1745–1748 [View Article][PubMed]
    [Google Scholar]
  33. Weiss N, Schillinger U, Laternser M, Kandler O. Lactobacillus sharpeae sp. nov. and Lactobacillus agilis sp. nov., two new species of homofermentative, meso-diaminopimelic acid-containing lactobacilli isolated from sewage. Zbl Bakt Hyg I Abt Orig C 1981; 2:242–253
    [Google Scholar]
  34. Kandler O, Weiss N. Genus Lactobacillus beijerinck 1901, 212212AL. In Sneath PHA, Mair NS, Sharpe ME, Holt JG. (editors) Bergey’s Manual of Systematic Bacteriology vol. 2 Baltimore: Williams & Wilkins; 19861901 pp. 1209–1234
    [Google Scholar]
  35. Chenoll E, Macián MC, Aznar R. Lactobacillus rennini sp. nov., isolated from rennin and associated with cheese spoilage. Int J Syst Evol Microbiol 2006; 56:449–452 [View Article][PubMed]
    [Google Scholar]
  36. Tohno M, Kitahara M, Irisawa T, Masuda T, Uegaki R et al. Description of Lactobacillus iwatensis sp. nov., isolated from orchardgrass (Dactylis glomerata L.) silage, and Lactobacillus backii sp. nov. Int J Syst Evol Microbiol 2013; 63:3854–3860 [View Article][PubMed]
    [Google Scholar]
  37. Ehrmann MA, Preissler P, Danne M, Vogel RF. Lactobacillus paucivorans sp. nov., isolated from a brewery environment. Int J Syst Evol Microbiol 2010; 60:2353–2357 [View Article][PubMed]
    [Google Scholar]
  38. Valcheva R, Korakli M, Onno B, Prévost H, Ivanova I et al. Lactobacillus hammesii sp. nov., isolated from French sourdough. Int J Syst Evol Microbiol 2005; 55:763–767 [View Article][PubMed]
    [Google Scholar]
  39. Hiraga K, Ueno Y, Sukontasing S, Tanasupawat S, Oda K. Lactobacillus senmaizukei sp. nov., isolated from Japanese pickle. Int J Syst Evol Microbiol 2008; 58:1625–1629 [View Article][PubMed]
    [Google Scholar]
  40. Vancanneyt M, Naser SM, Engelbeen K, de Wachter M, van der Meulen R et al. Reclassification of Lactobacillus brevis strains LMG 11494 and LMG 11984 as Lactobacillus parabrevis sp. nov. Int J Syst Evol Microbiol 2006; 56:1553–1557 [View Article][PubMed]
    [Google Scholar]
  41. Yi EJ, Yang JE, Lee JM, Park Y, Park SY et al. Lactobacillus yonginensis sp. nov., a lactic acid bacterium with ginsenoside converting activity isolated from Kimchi. Int J Syst Evol Microbiol 2013; 63:1140–1144 [View Article][PubMed]
    [Google Scholar]
  42. Bui TP, Kim YJ, In JG, Yang DC. Lactobacillus koreensis sp. nov., isolated from the traditional Korean food kimchi. Int J Syst Evol Microbiol 2011; 61:772–776 [View Article][PubMed]
    [Google Scholar]
  43. Koob J, Jacob F, Wenning M, Hutzler M. Lactobacillus cerevisiae sp. nov., isolated from a spoiled brewery sample. Int J Syst Evol Microbiol 2017; 67:3452–3457 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003474
Loading
/content/journal/ijsem/10.1099/ijsem.0.003474
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited Most Cited RSS feed