1887

Abstract

strain HST28 isolated from the Salar de Huasco, an athalassohaline and poly-extreme high altitude saline wetland located in northern Chile, was the subject of a polyphasic taxonomic study. Strain HST28 showed morphological and chemotaxonomic features in line with its classification in the genus Optimal growth of strain HST28 was obtained at 28 °C, pH 8–9 and up to 10 % (w/v) NaCl. Single (16S rRNA) and multi-locus gene sequence analyses showed that strain HST28 had a distinct phylogenetic position from its closest relatives, the type strains of and . Digital DNA–DNA hybridization (23.3 and 31.0 %) and average nucleotide identity (79.3 and 85.6 %) values between strain HST28 and its corresponding relatives mentioned above were below the threshold of 70 and 96 %, respectively, defined for assigning a prokaryotic strains to the same species. Strain HST28 was characterised by the presence of -diaminopimelic acid in its peptidoglycan layer; galactose, glucose, ribose and traces of arabinose and mannose as whole-cell sugars; phosphatidylmethylethanolamine, phosphatidylinositol, aminolipid, glycophospholipid and an unidentified lipid as polar lipids; and the predominating menaquinones MK-9(H), MK-9(H) and MK-9(H4) (>20 %) as well as anteiso-C and anteiso-C as major fatty acids (>15 %). Based on the phenotypic and genetic results, strain HST28 (DSM 107268=CECT 9648) merits recognition as a new species named sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003468
2019-08-01
2019-08-25
Loading full text...

Full text loading...

References

  1. Kämpfer P. Genus I. Streptomyces. In Whitman W, Goodfellow M, Kämpfer P, Busse H-J, Trujillo M et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 5 The Actinobacteria, Part B. New York: Springer; 2012; pp.1455–1767
    [Google Scholar]
  2. Labeda DP, Goodfellow M, Brown R, Ward AC, Lanoot B et al. Phylogenetic study of the species within the family Streptomycetaceae. Antonie van Leeuwenhoek 2012;101:73–104 [CrossRef][PubMed]
    [Google Scholar]
  3. Labeda DP, Dunlap CA, Rong X, Huang Y, Doroghazi JR et al. Phylogenetic relationships in the family Streptomycetaceae using multi-locus sequence analysis. Antonie van Leeuwenhoek 2017;110:563–583 [CrossRef][PubMed]
    [Google Scholar]
  4. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol 2018;9:9 [CrossRef][PubMed]
    [Google Scholar]
  5. Ping X, Takahashi Y, Seino A, Iwai Y, Omura S. Streptomyces scabrisporus sp. nov. Int J Syst Evol Microbiol 2004;54:577–581 [CrossRef][PubMed]
    [Google Scholar]
  6. Nagai A, Khan ST, Tamura T, Takagi M, Shin-Ya K. Streptomyces aomiensis sp. nov., isolated from a soil sample using the membrane-filter method. Int J Syst Evol Microbiol 2011;61:947–950 [CrossRef][PubMed]
    [Google Scholar]
  7. Angert ER. Alternatives to binary fission in bacteria. Nat Rev Microbiol 2005;3:214–224 [CrossRef][PubMed]
    [Google Scholar]
  8. Kroppenstedt R. Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Elsevier Science & Technology Books; 1985; pp.173–199
    [Google Scholar]
  9. Watve MG, Tickoo R, Jog MM, Bhole BD. How many antibiotics are produced by the genus Streptomyces?. Arch Microbiol 2001;176:386–390 [CrossRef][PubMed]
    [Google Scholar]
  10. Bull AT, Asenjo JA. Microbiology of hyper-arid environments: recent insights from the Atacama Desert, Chile. Antonie van Leeuwenhoek 2013;103:1173–1179 [CrossRef][PubMed]
    [Google Scholar]
  11. Rateb ME, Ebel R, Jaspars M. Natural product diversity of actinobacteria in the Atacama Desert. Antonie van Leeuwenhoek 2018;111:14671477 [CrossRef][PubMed]
    [Google Scholar]
  12. Okoro CK, Brown R, Jones AL, Andrews BA, Asenjo JA et al. Diversity of culturable actinomycetes in hyper-arid soils of the Atacama Desert, Chile. Antonie van Leeuwenhoek 2009;95:121–133 [CrossRef][PubMed]
    [Google Scholar]
  13. Busarakam K, Bull AT, Girard G, Labeda DP, van Wezel GP et al. Streptomyces leeuwenhoekii sp. nov., the producer of chaxalactins and chaxamycins, forms a distinct branch in Streptomyces gene trees. Antonie van Leeuwenhoek 2014;105:849–861 [CrossRef][PubMed]
    [Google Scholar]
  14. Nachtigall J, Kulik A, Helaly S, Bull AT, Goodfellow M et al. Atacamycins A-C, 22-membered antitumor macrolactones produced by Streptomyces sp. C38. J Antibiot 2011;64:775–780 [CrossRef][PubMed]
    [Google Scholar]
  15. Rateb ME, Houssen WE, Harrison WT, Deng H, Okoro CK et al. Diverse metabolic profiles of a Streptomyces strain isolated from a hyper-arid environment. J Nat Prod 2011;74:1965–1971 [CrossRef][PubMed]
    [Google Scholar]
  16. Rateb ME, Houssen WE, Arnold M, Abdelrahman MH, Deng H et al. Chaxamycins A-D, bioactive ansamycins from a hyper-arid desert Streptomyces sp. J Nat Prod 2011;74:1491–1499 [CrossRef][PubMed]
    [Google Scholar]
  17. Elsayed SS, Trusch F, Deng H, Raab A, Prokes I et al. Chaxapeptin, a Lasso Peptide from Extremotolerant Streptomyces leeuwenhoekii Strain C58 from the Hyperarid Atacama Desert. J Org Chem 2015;80:10252–10260 [CrossRef][PubMed]
    [Google Scholar]
  18. Goodfellow M, Busarakam K, Idris H, Labeda DP, Nouioui I et al. Streptomyces asenjonii sp. nov., isolated from hyper-arid Atacama Desert soils and emended description of Streptomyces viridosporus Pridham et al. 1958. Antonie van Leeuwenhoek 2017;110:1133–1148 [CrossRef][PubMed]
    [Google Scholar]
  19. Abdelkader MSA, Philippon T, Asenjo JA, Bull AT, Goodfellow M et al. Asenjonamides A-C, antibacterial metabolites isolated from Streptomyces asenjonii strain KNN 42.f from an extreme-hyper arid Atacama Desert soil. J Antibiot 2018;71:425–431 [CrossRef][PubMed]
    [Google Scholar]
  20. Cortés-Albayay C, Silber J, Imhoff JF, Asenjo JA, Andrews B et al. The polyextreme ecosystem, Salar de Huasco at the Chilean Altiplano of the Atacama Desert houses diverse Streptomyces spp. with promising pharmaceutical potentials. Diversity 2019; 11:69.
  21. Dorador C, Meneses D, Urtuvia V, Demergasso C, Vila I et al. Diversity of Bacteroidetes in high-altitude saline evaporitic basins in northern Chile. J Geophys Res 2009;114:n/a–11 [CrossRef]
    [Google Scholar]
  22. Hernández KL, Yannicelli B, Olsen LM, Dorador C, Menschel EJ et al. Microbial activity response to solar radiation across contrasting environmental conditions in salar de huasco, Northern Chilean altiplano. Front Microbiol 2016;7:7 [CrossRef][PubMed]
    [Google Scholar]
  23. Manfio GP, Atalan E, Zakrzewska-Czerwinska J, Mordarski M, Rodríguez C et al. Classification of novel soil streptomycetes as Streptomyces aureus sp. nov., Streptomyces laceyi sp. nov. and Streptomyces sanglieri sp. nov. Antonie van Leeuwenhoek 2003;83:245–255 [CrossRef][PubMed]
    [Google Scholar]
  24. Umezawa H, Ueda M, Maeda K, Yagishita K, Kondo S et al. Production and isolation of a new antibiotic: kanamycin. J Antibiot 1957;10:181–188[PubMed]
    [Google Scholar]
  25. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16:313–340 [CrossRef]
    [Google Scholar]
  26. Vaas LA, Sikorski J, Michael V, Göker M, Klenk HP. Visualization and curve-parameter estimation strategies for efficient exploration of phenotype microarray kinetics. PLoS One 2012;7:e34846 [CrossRef][PubMed]
    [Google Scholar]
  27. Vaas LA, Sikorski J, Hofner B, Fiebig A, Buddruhs N et al. opm: an R package for analysing OmniLog(R) phenotype microarray data. Bioinformatics 2013;29:1823–1824 [CrossRef][PubMed]
    [Google Scholar]
  28. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974;28:226–231[PubMed]
    [Google Scholar]
  29. Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 1970;20:435–443 [CrossRef]
    [Google Scholar]
  30. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  31. Tindall BJ. Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 1990;66:199–202 [CrossRef]
    [Google Scholar]
  32. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982;16:584–586[PubMed]
    [Google Scholar]
  33. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 1988;38:358–361 [CrossRef]
    [Google Scholar]
  34. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, Technical Note 101. Microbial ID. Newark, USA: Del Inc; 1990
    [Google Scholar]
  35. Stackebrandt E, Liesack W. Nucleic Acids and Classification. In Goodfellow M, O’Donnell AG. (editors) Handbook of New Bacterial Systematics Academic Press; 1993; pp.151–194
    [Google Scholar]
  36. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  37. Meier-Kolthoff JP, Göker M, Spröer C, Klenk HP. When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 2013;195:413–418 [CrossRef][PubMed]
    [Google Scholar]
  38. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  39. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  40. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Biol 1971;20:406–416 [CrossRef]
    [Google Scholar]
  41. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V et al. Complete genome sequence of DSM 30083T, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 2014;9:2 [CrossRef]
    [Google Scholar]
  42. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  43. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014;30:1312–1313 [CrossRef][PubMed]
    [Google Scholar]
  44. Goloboff PA, Farris JS, Nixon KC. TNT, a free program for phylogenetic analysis. Cladistics 2008;24:774–786 [CrossRef]
    [Google Scholar]
  45. Pattengale ND, Alipour M, Bininda-Emonds OR, Moret BM, Stamatakis A. How many bootstrap replicates are necessary?. J Comput Biol 2010;17:337–354 [CrossRef][PubMed]
    [Google Scholar]
  46. Tamura T, Hayakawa M, Hatano K. A new genus of the order Actinomycetales, Cryptosporangium gen. nov., with descriptions of Cryptosporangium arvum sp. nov. and Cryptosporangium japonicum sp. nov. Int J Syst Bacteriol 1998;48:995–1005 [CrossRef][PubMed]
    [Google Scholar]
  47. Swofford Dl. P. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sunderland: Sinauer Associates. 2003
  48. Idris H, Labeda DP, Nouioui I, Castro JF, Del Carmen Montero-Calasanz M et al. Streptomyces aridus sp. nov., isolated from a high altitude Atacama desert soil and emended description of Streptomyces noboritoensis Isono et al. 1957. Antonie van Leeuwenhoek 2017;110:705–717 [CrossRef][PubMed]
    [Google Scholar]
  49. Labeda DP. Taxonomic evaluation of putative Streptomyces scabiei strains held in the ARS Culture Collection (NRRL) using multi-locus sequence analysis. Antonie van Leeuwenhoek 2016;109:349–356 [CrossRef][PubMed]
    [Google Scholar]
  50. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  51. Savic M, Bratic I, Vasiljevic B. Streptomyces durmitorensis sp. nov., a producer of an FK506-like immunosuppressant. Int J Syst Evol Microbiol 2007;57:2119–2124 [CrossRef][PubMed]
    [Google Scholar]
  52. Waksman SA, Lechevalier HA. Guide to the Classification and Identification of the Actinomycetes and Their Antibiotics Baltimore: Williams & Wilkins; 1953
    [Google Scholar]
  53. Gause GF, Preobrazhenskaya TP, Sveshnikova MA, Terekhova LP, Maximova TS et al. A Guide for the Determination of Actinomycetes. Genera Streptomyces, Streptoverticillium and Chainia Moscow: Nauka; 1983
    [Google Scholar]
  54. Xu LH, Jiang Y, Li WJ, Wen ML, Li MG et al. Streptomyces roseoalbus sp. nov., an actinomycete isolated from soil in Yunnan, PR China. Antonie van Leeuwenhoek 2005;87:189–194 [CrossRef][PubMed]
    [Google Scholar]
  55. Rong X, Huang Y. Multi-locus sequence analysis. Taking prokaryotic systematics to the next level. Methods Microbiol 2014;41:221–251
    [Google Scholar]
  56. Rong X, Huang Y. Taxonomic evaluation of the Streptomyces hygroscopicus clade using multilocus sequence analysis and DNA-DNA hybridization, validating the MLSA scheme for systematics of the whole genus. Syst Appl Microbiol 2012;35:7–18 [CrossRef][PubMed]
    [Google Scholar]
  57. Schniete JK, Salih TS, Algora-Gallardo L, Santos T, Filgueira-Martinez S et al. Draft genome sequence of Streptomyces phaeoluteigriseus DSM41896. Genome Announc 2017;5:e0037117 [CrossRef][PubMed]
    [Google Scholar]
  58. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  59. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008;9:75 [CrossRef][PubMed]
    [Google Scholar]
  60. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014;42:D206–D214 [CrossRef][PubMed]
    [Google Scholar]
  61. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  62. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66:1100–1103 [CrossRef][PubMed]
    [Google Scholar]
  63. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int J Syst Evol Microbiol 1987;37:463–464 [CrossRef]
    [Google Scholar]
  64. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  65. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  66. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the bacteria and archaea. Int J Syst Evol Microbiol 2014;64:316–324 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003468
Loading
/content/journal/ijsem/10.1099/ijsem.0.003468
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error