1887

Abstract

A novel aerobic bacterium, designated as strain GM2012, was isolated from a microbial mat proliferating under the flow of thermal water dissipating from the wall of a 4000 m deep mine in South Africa. The cells were non-motile cocci, capable of budding, occurred in single or gathered in aggregates. The organism is a strictly aerobic chemoorganoheterotroph, preferring simple sugars and polysaccharides as growth substrates. The optimal growth occurred at 42 °C and pH 7.5–7.7. The predominant fatty acids were palmitate, stearate and oleate. The G+C content of the DNA was 70.1 mol%. The 16S rRNA gene sequence analysis placed strain GM2012 within the family of the order with 88–89 % sequence identity to , , , and type strains. Based on the genotypic and phenotypic distinctive features of the new strain, we propose a novel genus and species gen. nov., sp. nov. with the type strain GM2012 (=VKM B-2860,=KCTC 72013).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003467
2019-08-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/8/2299.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003467&mimeType=html&fmt=ahah

References

  1. Wiegand S, Jogler M, Jogler C. On the maverick Planctomycetes . FEMS Microbiol Rev 2018; 42:739–760 [View Article][PubMed]
    [Google Scholar]
  2. Franzmann PD, Skerman VB. Gemmata obscuriglobus, a new genus and species of the budding bacteria. Antonie van Leeuwenhoek 1984; 50:261–268 [View Article][PubMed]
    [Google Scholar]
  3. Schlesner H, Hirsch P. Assignment of ATCC 27377 to Pirella gen. nov. as Pirella staleyi comb. nov. Int J Syst Bacteriol 1984; 34:492–495 [View Article]
    [Google Scholar]
  4. Hirsch P, Müller M. Planctomyces limnophilus sp. nov., a stalked and budding bacterium from freshwater. Syst Appl Microbiol 1985; 6:276–280 [View Article]
    [Google Scholar]
  5. Bondoso J, Albuquerque L, Nobre MF, Lobo-da-Cunha A, da Costa MS et al. Aquisphaera giovannonii gen. nov., sp. nov., a planctomycete isolated from a freshwater aquarium. Int J Syst Evol Microbiol 2011; 61:2844–2850 [View Article][PubMed]
    [Google Scholar]
  6. Schlesner H. Planctomyces brasiliensis sp. nov., a halotolerant bacterium from a salt pit. Syst Appl Microbiol 1989; 12:159–161 [View Article]
    [Google Scholar]
  7. Schlesner H, Rensmann C, Tindall BJ, Gade D, Rabus R et al. Taxonomic heterogeneity within the Planctomycetales as derived by DNA-DNA hybridization, description of Rhodopirellula baltica gen. nov., sp. nov., transfer of Pirellula marina to the genus Blastopirellula gen. nov. as Blastopirellula marina comb. nov. and emended description of the genus Pirellula. Int J Syst Evol Microbiol 2004; 54:1567–1580 [View Article][PubMed]
    [Google Scholar]
  8. Bondoso J, Albuquerque L, Nobre MF, Lobo-da-Cunha A, da Costa MS et al. Roseimaritima ulvae gen. nov., sp. nov. and Rubripirellula obstinata gen. nov., sp. nov. two novel planctomycetes isolated from the epiphytic community of macroalgae. Syst Appl Microbiol 2015; 38:8–15 [View Article][PubMed]
    [Google Scholar]
  9. Kohn T, Heuer A, Jogler M, Vollmers J, Boedeker C et al. Fuerstia marisgermanicae gen. nov., sp. nov., an unusual member of the phylum Planctomycetes from the German Wadden Sea. Front Microbiol 2016; 7:22 [View Article][PubMed]
    [Google Scholar]
  10. Kulichevskaya IS, Ivanova AO, Belova SE, Baulina OI, Bodelier PL et al. Schlesneria paludicola gen. nov., sp. nov., the first acidophilic member of the order Planctomycetales, from Sphagnum-dominated boreal wetlands. Int J Syst Evol Microbiol 2007; 57:2680–2687 [View Article][PubMed]
    [Google Scholar]
  11. Kulichevskaya IS, Ivanova AO, Baulina OI, Bodelier PL, Damsté JS et al. Singulisphaera acidiphila gen. nov., sp. nov., a non-filamentous, Isosphaera-like planctomycete from acidic northern wetlands. Int J Syst Evol Microbiol 2008; 58:1186–1193 [View Article][PubMed]
    [Google Scholar]
  12. Kulichevskaya IS, Baulina OI, Bodelier PL, Rijpstra WI, Damsté JS et al. Zavarzinella formosa gen. nov., sp. nov., a novel stalked, Gemmata-like planctomycete from a Siberian peat bog. Int J Syst Evol Microbiol 2009; 59:357–364 [View Article][PubMed]
    [Google Scholar]
  13. Kulichevskaya IS, Serkebaeva YM, Kim Y, Rijpstra WI, Damsté JS et al. Telmatocola sphagniphila gen. nov., sp. nov., a novel dendriform planctomycete from northern wetlands. Front Microbiol 2012; 3:1–9 [View Article][PubMed]
    [Google Scholar]
  14. Kulichevskaya IS, Detkova EN, Bodelier PLE, Rijpstra WIC, Sinninghe Damste JS et al. Singulisphaera rosea sp. nov., a planctomycete from acidic Sphagnum peat, and emended description of the genus Singulisphaera . Int J Syst Evol Microbiol 2012; 62:118–123 [View Article]
    [Google Scholar]
  15. Kulichevskaya IS, Ivanova AA, Detkova EN, Rijpstra WI, Sinninghe Damsté JS et al. Planctomicrobium piriforme gen. nov., sp. nov., a stalked planctomycete from a littoral wetland of a boreal lake. Int J Syst Evol Microbiol 2015; 65:1659–1665 [View Article][PubMed]
    [Google Scholar]
  16. Kulichevskaya IS, Ivanova AA, Suzina NE, Rijpstra WIC, Sinninghe Damsté JS et al. Paludisphaera borealis gen. nov., sp. nov., a hydrolytic planctomycete from northern wetlands, and proposal of Isosphaeraceae fam. nov. Int J Syst Evol Microbiol 2016; 66:837–844 [View Article][PubMed]
    [Google Scholar]
  17. Kulichevskaya IS, Ivanova AA, Baulina OI, Rijpstra WI, Sinninghe Damsté JS et al. Fimbriiglobus ruber gen. nov., sp. nov., a Gemmata-like planctomycete from Sphagnum peat bog and the proposal of Gemmataceae fam. nov. Int J Syst Evol Microbiol 2017; 67:218–224 [View Article][PubMed]
    [Google Scholar]
  18. Kulichevskaya IS, Ivanova AA, Detkova EN, Rijpstra WIC, Sinninghe Damsté JS et al. Tundrisphaera lichenicola gen. nov., sp. nov., a psychrotolerant representative of the family Isosphaeraceae from lichen-dominated tundra soils. Int J Syst Evol Microbiol 2017; 67:3583–3589 [View Article][PubMed]
    [Google Scholar]
  19. Giovannoni SJ, Schabtach E, Castenholz RW. Isosphaera pallida, gen. and comb. nov., a gliding, budding eubacterium from hot springs. Arch Microbiol 1987; 147:276–284 [View Article]
    [Google Scholar]
  20. Slobodkina GB, Kovaleva OL, Miroshnichenko ML, Slobodkin AI, Kolganova TV et al. Thermogutta terrifontis gen. nov., sp. nov. and Thermogutta hypogea sp. nov., thermophilic anaerobic representatives of the phylum Planctomycetes . Int J Syst Evol Microbiol 2015; 65:760–765 [View Article][PubMed]
    [Google Scholar]
  21. Kovaleva OL, Merkel AY, Novikov AA, Baslerov RV, Toshchakov SV et al. Tepidisphaera mucosa gen. nov., sp. nov., a moderately thermophilic member of the class Phycisphaerae in the phylum Planctomycetes, and proposal of a new family, Tepidisphaeraceae fam. nov., and a new order, Tepidisphaerales ord. nov. Int J Syst Evol Microbiol 2015; 65:549–555 [View Article][PubMed]
    [Google Scholar]
  22. Slobodkina GB, Panteleeva AN, Beskorovaynaya DA, Bonch-Osmolovskaya EA, Slobodkin AI. Thermostilla marina gen. nov., sp. nov., a thermophilic, facultatively anaerobic planctomycete isolated from a shallow submarine hydrothermal vent. Int J Syst Evol Microbiol 2016; 66:633–638 [View Article][PubMed]
    [Google Scholar]
  23. Elcheninov AG, Menzel P, Gudbergsdottir SR, Slesarev AI, Kadnikov VV et al. Sugar Metabolism of the first Thermophilic planctomycete Thermogutta terrifontis: comparative genomic and transcriptomic approaches. Front Microbiol 2017; 8:1–11 [View Article][PubMed]
    [Google Scholar]
  24. Podosokorskaya OA, Merkel AY, Gavrilov SN, Fedoseev I, Heerden E et al. Tepidibacillus infernus sp. nov., a moderately thermophilic, selenate- and arsenate-respiring hydrolytic bacterium isolated from a gold mine, and emended description of the genus Tepidibacillus . Int J Syst Evol Microbiol 2016; 66:3189–3194 [View Article][PubMed]
    [Google Scholar]
  25. Kevbrin VV, Zavarzin GA. The effect of sulfur compounds on growth of the halophilic homoacetic bacterium Acetohalobium arabaticum . Microbiology 1992; 61:563–567
    [Google Scholar]
  26. Wolin EA, Wolin MJ, Wolfe RS. Formation of methane by bacterial extracts. J Biol Chem 1963; 238:2882–2886[PubMed]
    [Google Scholar]
  27. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  28. Zhilina TN, Zavarzina DG, Panteleeva AN, Osipov GA, Kostrikina NA et al. Fuchsiella alkaliacetigena gen. nov., sp. nov., an alkaliphilic, lithoautotrophic homoacetogen from a soda lake. Int J Syst Evol Microbiol 2012; 62:1666–1673 [View Article][PubMed]
    [Google Scholar]
  29. Härtig C. Rapid identification of fatty acid methyl esters using a multidimensional gas chromatography-mass spectrometry database. J Chromatogr A 2008; 1177:159–169 [View Article][PubMed]
    [Google Scholar]
  30. Park D. Genomic DNA Isolation from different biological materials. In Hilario E, MacKay J. (editors) Protocols for Nucleic Acid Analysis by Nonradioactive Probes. Methods in Molecular Biology, 2nd ed. vol. 353 Humana Press; 2007 pp. 3–13
    [Google Scholar]
  31. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  32. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S et al. NCBI BLAST: a better web interface. Nucleic Acids Res 2008; 36:W5–W9 [View Article][PubMed]
    [Google Scholar]
  33. Katoh K, Rozewicki J, Yamada KD. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 2017 [View Article][PubMed]
    [Google Scholar]
  34. Darriba D, Taboada GL, Doallo R, Posada D. Europe PMC Funders Group jModelTest 2: more models, new heuristics and high- performance computing. Nat Methods 2015; 9:6–9
    [Google Scholar]
  35. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  36. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods 2016; 8:12–24 [View Article]
    [Google Scholar]
  37. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J et al. BLAST+: architecture and applications. BMC Bioinformatics 2009; 10:421–429 [View Article][PubMed]
    [Google Scholar]
  38. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  39. Marchler-Bauer A, Bryant SH. CD-Search: protein domain annotations on the fly. Nucleic Acids Res 2004; 32:W327–W331 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003467
Loading
/content/journal/ijsem/10.1099/ijsem.0.003467
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error