1887

Abstract

Strain 1JSPR-7, a facultatively anaerobic bacterium isolated from the gut of larvae of raised in Wanju-gun, Republic of Korea, was characterized using a polyphasic approach. Comparative analysis of 16S rRNA gene and gene sequences showed that strain 1JSPR-7 fell within the genus , forming a compact cluster with the type strain of four subspecies of and . The 16S rRNA gene sequence of strain 1JSPR-7 revealed the highest homology with subsp. JCM 5805 (97.3 %) and subsp. NBRC 100931 (97.1 %), and the gene sequence showed the highest similarity to subsp. DSM 20069 (91.4 %) and subsp. L105 (91.4 %). The average nucleotide identity and digital DNA–DNA hybridization values indicated that strain 1JSPR-7 was a novel species of the genus . The major fatty acids (>10 % of the total fatty acids) were summed feature 7 (unknown 18.846, Cω6 and/or Ccyclo ω10), C and C, and the predominant menaquinone was MK-8 with MK-7 as a minor one. The polar lipids consisted of diphosphatidylglycerol, phosphatidylglycerol, an unidentified phospholipid and three unidentified glycolipids with diphosphatidylglycerol as the major one. The cell-wall peptidoglycan was of the A4 type with an interpeptide bridge comprising -Lys--Asp. The DNA G+C content based on the whole genome sequences was 37.4 mol%. Based on the data obtained, strain 1JSPR-7 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 1JSPR-7 (=KACC 19319=NBRC 113068).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003461
2019-12-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/12/3682.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003461&mimeType=html&fmt=ahah

References

  1. Teuber M. Genus Lactococcus Schleifer, Kraus, Dvorak, Kilpper-Bälz, Collins and Fischer 1986. In Vos P, Garrity G, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. 3 Springer Science & Business Media; 2009 pp. 711–722
    [Google Scholar]
  2. Salminen S, von Wright A, Morelli L, Marteau P, Brassart D et al. Demonstration of safety of probiotics-a review. Int J Food Microbiol 1998; 44:93–106 [View Article][PubMed]
    [Google Scholar]
  3. Collins MD, Farrow JA, Phillips BA, Kandler O. Streptococcus garvieae sp. nov. and Streptococcus plantarum sp. nov. J Gen Microbiol 1983; 129:3427–3431 [View Article][PubMed]
    [Google Scholar]
  4. Vinh DC, Nichol KA, Rand F, Embil JM. Native-valve bacterial endocarditis caused by Lactococcus garvieae . Diagn Microbiol Infect Dis 2006; 56:91–94 [View Article][PubMed]
    [Google Scholar]
  5. Wang CY, Shie HS, Chen SC, Huang JP, Hsieh IC et al. Lactococcus garvieae infections in humans: possible association with aquaculture outbreaks. Int J Clin Pract 2007; 61:68–73 [View Article][PubMed]
    [Google Scholar]
  6. Yiu KH, Siu CW, To KK, Jim MH, Lee KL et al. A rare cause of infective endocarditis; Lactococcus garvieae . Int J Cardiol 2007; 114:286–287 [View Article][PubMed]
    [Google Scholar]
  7. Mannion PT, Rothburn MM. Diagnosis of bacterial endocarditis caused by Streptococcus lactis and assisted by immunoblotting of serum antibodies. J Infect 1990; 21:317–318 [View Article][PubMed]
    [Google Scholar]
  8. Schleifer KH, Kraus J, Dvorak C, Kilpper-Bälz R, Collins MD et al. Transfer of Streptococcus lactis and related Streptococci to the genus Lactococcus gen. nov. Syst Appl Microbiol 1985; 6:183–195 [View Article]
    [Google Scholar]
  9. Kovacs N. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 1956; 178:703–704 [View Article][PubMed]
    [Google Scholar]
  10. Smibert R, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 607–654
    [Google Scholar]
  11. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  12. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  13. Hamada M, Tamura T, Yamamura H, Suzuki K, Hayakawa M. Lysinimicrobium mangrovi gen. nov., sp. nov., an actinobacterium isolated from the rhizosphere of a mangrove. Int J Syst Evol Microbiol 2012; 62:1731–1735 [View Article][PubMed]
    [Google Scholar]
  14. Hamada M, Yamamura H, Komukai C, Tamura T, Suzuki K et al. Luteimicrobium album sp. nov., a novel actinobacterium isolated from a lichen collected in Japan, and emended description of the genus Luteimicrobium . J Antibiot 2012; 65:427–431 [View Article][PubMed]
    [Google Scholar]
  15. Noda S, Sakamoto M, Aihara C, Yuki M, Katsuhara M et al. Lactococcus termiticola sp. nov., isolated from the gut of the wood-feeding higher termite Nasutitermes takasagoensis . Int J Syst Evol Microbiol 2018; 68:3832–3836 [View Article][PubMed]
    [Google Scholar]
  16. Schleifer KH. Recent changes in the taxonomy of lactic acid bacteria. FEMS Microbiol Lett 1987; 46:201–203 [View Article]
    [Google Scholar]
  17. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013; 10:563–569 [View Article][PubMed]
    [Google Scholar]
  18. Tatusova T, Dicuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016; 44:6614–6624 [View Article][PubMed]
    [Google Scholar]
  19. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  20. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article][PubMed]
    [Google Scholar]
  21. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  22. Chen YS, Chang CH, Pan SF, Wang LT, Chang YC et al. Lactococcus taiwanensis sp. nov., a lactic acid bacterium isolated from fresh cummingcordia. Int J Syst Evol Microbiol 2013; 63:2405–2409 [View Article][PubMed]
    [Google Scholar]
  23. Chen YS, Otoguro M, Lin YH, Pan SF, Ji SH et al. Lactococcus formosensis sp. nov., a lactic acid bacterium isolated from yan-tsai-shin (fermented broccoli stems). Int J Syst Evol Microbiol 2014; 64:146–151 [View Article][PubMed]
    [Google Scholar]
  24. Goodman LB, Lawton MR, Franklin-Guild RJ, Anderson RR, Schaan L et al. Lactococcus petauri sp. nov., isolated from an abscess of a sugar glider. Int J Syst Evol Microbiol 2017; 67:4397–4404 [View Article][PubMed]
    [Google Scholar]
  25. Pérez T, Balcázar JL, Peix A, Valverde A, Velázquez E et al. Lactococcus lactis subsp. tructae subsp. nov. isolated from the intestinal mucus of brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). Int J Syst Evol Microbiol 2011; 61:1894–1898 [View Article][PubMed]
    [Google Scholar]
  26. Varsha KK, Nampoothiri KM. Lactococcus garvieae subsp. bovis subsp. nov., lactic acid bacteria isolated from wild gaur (Bos gaurus) dung, and description of Lactococcus garvieae subsp. garvieae subsp. nov. Int J Syst Evol Microbiol 2016; 66:3805–3809 [View Article][PubMed]
    [Google Scholar]
  27. Yuki M, Sakamoto M, Nishimura Y, Ohkuma M. Lactococcus reticulitermitis sp. nov., isolated from the gut of the subterranean termite Reticulitermes speratus . Int J Syst Evol Microbiol 2018; 68:596–601 [View Article][PubMed]
    [Google Scholar]
  28. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  29. Felske A, Rheims H, Wolterink A, Stackebrandt E, Akkermans AD. Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soils. Microbiology 1997; 143:2983–2989 [View Article][PubMed]
    [Google Scholar]
  30. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007; 35:3100–3108 [View Article][PubMed]
    [Google Scholar]
  31. Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012; 28:1823–1829 [View Article][PubMed]
    [Google Scholar]
  32. Case RJ, Boucher Y, Dahllöf I, Holmström C, Doolittle WF et al. Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Appl Environ Microbiol 2007; 73:278–288 [View Article][PubMed]
    [Google Scholar]
  33. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  34. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  35. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  36. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  37. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  38. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  39. Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol 2014; 12:635–645 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003461
Loading
/content/journal/ijsem/10.1099/ijsem.0.003461
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error