1887

Abstract

A Gram-stain-negative, motile, non-spore-forming, aerobic and rod-shaped bacterial strain, Soil36-7, was isolated from an enriched hydrocarbon-degrading consortium in South China Sea sediment. Strain Soil36-7 grew at 4–40 °C (optimum 28–32 °C), at pH 5–10 (pH 7–8) and in the presence of 1–12 % (w/v) NaCl (3–6 %). Phylogenetic analyses based on 16S rRNA gene sequences and a genome-based approach using UBCGs (up-to-date bacterial core genes) showed Soil36-7 formed a distinct branching lineage within the family . 16S rRNA gene sequence similarity was 92.9, 92.1 and >88.3 % between strain Soil36-7 and the type species of the genera , and the other genera of the family , respectively. The major fatty acids in Soil36-7 were C, Cω6/7, C 10-methyl, Cω7, C and C. The predominant respiratory quinone was Q-9, with a minor amount of Q-10 (3.5 %). The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, and various unidentified glycolipids, phospholipids, aminophospholipids and other polar lipids. The DNA G+C content was 57.9 mol%. On the basis of phylogenetic, genomic, phenotypic and chemotaxanomic characteristics, strain Soil36-7 could be classified as representing a novel species of a new genus within the family , for which the name gen. nov., sp. nov. is proposed. The type strain of the type species is Soil36-7 (=MCCC 1A12105=KCTC 62334).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003454
2019-08-01
2019-08-19
Loading full text...

Full text loading...

References

  1. Garrity G, Bell J, Class LT III. Gammaproteobacteria class nov. In Garrity G, Brenner D, Krieg N, Staley J. (editors) Bergey's Manual of Systematic Bacteriology New York: Springer; 2005; pp.1
    [Google Scholar]
  2. Ivanova EP, Mikhailov VV, New Family A. Alteromonadaceae fam. nov., including marine proteobacteria of the genera Alteromonas, Pseudoalteromonas, Idiomarina and Colwellia. Microbiology 2001;70:10–17 [CrossRef]
    [Google Scholar]
  3. Ivanova EP, Flavier S, Christen R. Phylogenetic relationships among marine Alteromonas-like proteobacteria: emended description of the family Alteromonadaceae and proposal of Pseudoalteromonadaceae fam. nov., Colwelliaceae fam. nov., Shewanellaceae fam. nov., Moritellaceae fam. nov., Ferrimonadaceae fam. nov., Idiomarinaceae fam. nov. and Psychromonadaceae fam. nov. Int J Syst Evol Microbiol 2004;54:1773–1788 [CrossRef][PubMed]
    [Google Scholar]
  4. Yi H, Bae KS, Chun J. Aestuariibacter salexigens gen. nov., sp. nov. and Aestuariibacter halophilus sp. nov., isolated from tidal flat sediment, and emended description of Alteromonas macleodii. Int J Syst Evol Microbiol 2004;54:571–576 [CrossRef][PubMed]
    [Google Scholar]
  5. Teramoto M, Nishijima M. Agaribacter marinus gen. nov., sp. nov., an agar-degrading bacterium from surface seawater. Int J Syst Evol Microbiol 2014;64:2416–2423 [CrossRef][PubMed]
    [Google Scholar]
  6. Kurahashi M, Yokota A. Agarivorans albus gen. nov., sp. nov., a gamma-proteobacterium isolated from marine animals. Int J Syst Evol Microbiol 2004;54:693–697 [CrossRef][PubMed]
    [Google Scholar]
  7. Jean WD, Huang SP, Liu TY, Chen JS, Shieh WY. Aliagarivorans marinus gen. nov., sp. nov. and Aliagarivorans taiwanensis sp. nov., facultatively anaerobic marine bacteria capable of agar degradation. Int J Syst Evol Microbiol 2009;59:1880–1887 [CrossRef][PubMed]
    [Google Scholar]
  8. Jin HM, Jeong HI, Jeon CO. Aliiglaciecola aliphaticivorans sp. nov., an aliphatic hydrocarbon-degrading bacterium, isolated from a sea-tidal flat and emended description of the genus Aliiglaciecola Jean et al. 2013. Int J Syst Evol Microbiol 2015;65:1550–1555 [CrossRef][PubMed]
    [Google Scholar]
  9. Roh SW, Nam YD, Chang HW, Kim KH, Kim MS et al. Alishewanella aestuarii sp. nov., isolated from tidal flat sediment, and emended description of the genus Alishewanella. Int J Syst Evol Microbiol 2009;59:421–424 [CrossRef][PubMed]
    [Google Scholar]
  10. van Trappen S, Tan TL, Yang J, Mergaert J, Swings J. Alteromonas stellipolaris sp. nov., a novel, budding, prosthecate bacterium from Antarctic seas, and emended description of the genus Alteromonas. Int J Syst Evol Microbiol 2004;54:1157–1163 [CrossRef][PubMed]
    [Google Scholar]
  11. Jean WD, Chen JS, Lin YT, Shieh WY. Bowmanella denitrificans gen. nov., sp. nov., a denitrifying bacterium isolated from seawater from An-Ping Harbour, Taiwan. Int J Syst Evol Microbiol 2006;56:2463–2467 [CrossRef][PubMed]
    [Google Scholar]
  12. Yan S, Yu M, Wang Y, Shen C, Zhang XH. Catenovulum agarivorans gen. nov., sp. nov., a peritrichously flagellated, chain-forming, agar-hydrolysing gammaproteobacterium from seawater. Int J Syst Evol Microbiol 2011;61:2866–2873 [CrossRef][PubMed]
    [Google Scholar]
  13. Bowman JP, Mccammon SA, Brown JL, Mcmeekin TA. Glaciecola punicea gen. nov., sp. nov. and Glaciecola pallidula gen. nov., sp. nov.: psychrophilic bacteria from Antarctic sea-ice habitats. Int J Syst Bacteriol 1998;48:1213–1222 [CrossRef]
    [Google Scholar]
  14. Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M et al. Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 1992;42:568–576 [CrossRef][PubMed]
    [Google Scholar]
  15. González JM, Mayer F, Moran MA, Hodson RE, Whitman WB. Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. Int J Syst Bacteriol 1997;47:369–376 [CrossRef][PubMed]
    [Google Scholar]
  16. Sheu DS, Sheu SY, Lin KR, Chen YL, Chen WM. Planctobacterium marinum gen. nov., sp. nov., a new member of the family Alteromonadaceae isolated from seawater. Int J Syst Evol Microbiol 2017;67:974–980 [CrossRef][PubMed]
    [Google Scholar]
  17. Jeon CO, Lim JM, Park DJ, Kim CJ. Salinimonas chungwhensis gen. nov., sp. nov., a moderately halophilic bacterium from a solar saltern in Korea. Int J Syst Evol Microbiol 2005;55:239–243 [CrossRef][PubMed]
    [Google Scholar]
  18. Verma A, Mual P, Mayilraj S, Krishnamurthi S. Tamilnaduibacter salinus gen. nov., sp. nov., a halotolerant gammaproteobacterium within the family Alteromonadaceae, isolated from a salt pan in Tamilnadu, India. Int J Syst Evol Microbiol 2015;65:3248–3255 [CrossRef][PubMed]
    [Google Scholar]
  19. López-Pérez M, Rodriguez-Valera F. The Family Alteromonadaceae. In Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F et al. (editors) The Prokaryotes: Gammaproteobacteria Berlin, Heidelberg: Springer Berlin Heidelberg; 2014; pp.69–92
    [Google Scholar]
  20. Dong X, Cai M. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  21. Dyksterhouse SE, Gray JP, Herwig RP, Lara JC, Staley JT. Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol 1995;45:116–123 [CrossRef][PubMed]
    [Google Scholar]
  22. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 2013;10:563–569 [CrossRef][PubMed]
    [Google Scholar]
  23. Haft DH, Dicuccio M, Badretdin A, Brover V, Chetvernin V et al. RefSeq: an update on prokaryotic genome annotation and curation. Nucleic Acids Res 2018;46:D851–D860 [CrossRef][PubMed]
    [Google Scholar]
  24. Tatusova T, Dicuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016;44:6614–6624 [CrossRef][PubMed]
    [Google Scholar]
  25. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  26. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  27. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  28. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  29. Rzhetsky A, Nei M. A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 1992;9:945–967
    [Google Scholar]
  30. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  31. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  32. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  33. Na SI, Kim YO, Yoon SH, Ha SM, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018;56:280–285
    [Google Scholar]
  34. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. North Newark, Del, USA: MIDI Inc; 1990
    [Google Scholar]
  35. Collins MD. Isoprenoid quinone analyses in bacterial classification and identification. In Goodfellow M, Minnikin DE. (editors) Chemical Methods in Bacterial Systematics London: Academic Press; 1985; pp.267–287
    [Google Scholar]
  36. Kates M. Techniques of lipidology:Isolation, Analysis, and Identification of Lipids, 2nd ed. Amsterdam: Elsevier; 1986
    [Google Scholar]
  37. Kim BY, Weon HY, Yoo SH, Kim JS, Kwon SW et al. Marinobacter koreensis sp. nov., isolated from sea sand in Korea. Int J Syst Evol Microbiol 2006;56:2653–2656 [CrossRef][PubMed]
    [Google Scholar]
  38. Park S, Jung YT, Kim S, Yoon JH. Marinobacterium aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2016;66:1718–1723 [CrossRef][PubMed]
    [Google Scholar]
  39. Han SB, Wang RJ, Yu XY, Su Y, Sun C et al. Marinobacterium zhoushanense sp. nov., isolated from surface seawater. Int J Syst Evol Microbiol 2016;66:3437–3442 [CrossRef][PubMed]
    [Google Scholar]
  40. Baumann L, Baumann P, Mandel M, Allen RD. Taxonomy of aerobic marine eubacteria. J Bacteriol 1972;110:402–429
    [Google Scholar]
  41. Gauthier G, Gauthier M, Christen R. Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int J Syst Bacteriol 1995;45:755–761 [CrossRef][PubMed]
    [Google Scholar]
  42. Ivanova EP, Ng HJ, Webb HK, Kurilenko VV, Zhukova NV et al. Alteromonas australica sp. nov., isolated from the Tasman Sea. Antonie van Leeuwenhoek 2013;103:877–884 [CrossRef][PubMed]
    [Google Scholar]
  43. Mi Jin H, Hyun Kim K, Ok Jeon C. Alteromonas naphthalenivorans sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from tidal-flat sediment. Int J Syst Evol Microbiol 2015;65:4208–4214 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003454
Loading
/content/journal/ijsem/10.1099/ijsem.0.003454
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error