1887

Abstract

A bacterial strain, designated SOD, with Gram-stain-negative and motile rod-shaped cells, was isolated from soil in Hefei, PR China, and was characterized using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SOD belonged to the genus Massilia and showed the highest similarities to Massilia violaceinigra B2 (99.3 %), followed by Massilia glaciei B448-2 (98.7 %), Massilia eurypsychrophila CGMCC 1.12828 (98.6 %) and Rugamonas rubra CCM3730 (97.8 %). Average nucleotide identity and digital DNA–DNA hybridization values between genome sequences of strain SOD and the closely related species ranged from 77.1 to 89.3% and from 22.2 to 34.7 %. The DNA G+C content of strain SOD was 65.4 mol%. Strain SOD contained Q-8 as the major ubiquinone and the dominant fatty acids were summed feature 3 (C16 : 1ω7c and/or C15 : 0iso 2-OH; 58.5 %), C16 : 0 (26.8 %) and C18 : 1ω7c (5.0 %). The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. On the basis of the evidence presented in this study, strain SOD represents a novel species of the genus Massilia , for which the name Massilia atriviolacea sp. nov. is proposed. The type strain is SOD (=KCTC 62720=LMG 30840).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003449
2019-05-29
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/7/2135.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003449&mimeType=html&fmt=ahah

References

  1. La Scola B, Birtles RJ, Mallet MN, Raoult D. Massilia timonae gen. nov., sp. nov., isolated from blood of an immunocompromised patient with cerebellar lesions. J Clin Microbiol 1998; 36:2847–2852[PubMed]
    [Google Scholar]
  2. Kampfer P, Lodders N, Martin K, Falsen E. Revision of the genus Massilia La Scola et al. 2000, with an emended description of the genus and inclusion of all species of the genus Naxibacter as new combinations, and proposal of Massilia consociata sp. nov. Int J Syst Evol Microbiol 2011; 61:1528–1533 [View Article]
    [Google Scholar]
  3. Singh H, Du J, Won K, Yang JE, Yin C et al. Massilia arvi sp. nov., isolated from fallow-land soil previously cultivated with Brassica oleracea, and emended description of the genus Massilia . Int J Syst Evol Microbiol 2015; 65:3690–3696 [View Article][PubMed]
    [Google Scholar]
  4. Embarcadero-Jiménez S, Peix Á, Igual JM, Rivera-Orduña FN, Tao Wang E. Massilia violacea sp. nov., isolated from riverbank soil. Int J Syst Evol Microbiol 2016; 66:707–711 [View Article][PubMed]
    [Google Scholar]
  5. Du J, Yin CS. Massilia humi sp. nov. isolated from soil in Incheon, South Korea. Arch Microbiol 2016; 198:363–367 [View Article]
    [Google Scholar]
  6. Luo X, Xie Q, Wang J, Pang H, Fan J et al. Massilia lurida sp. nov., isolated from soil. Int J Syst Evol Microbiol 2013; 63:2118–2123 [View Article][PubMed]
    [Google Scholar]
  7. Wang J, Zhang J, Pang H, Zhang Y, Li Y et al. Massilia flava sp. nov., isolated from soil. Int J Syst Evol Microbiol 2012; 62:580–585 [View Article][PubMed]
    [Google Scholar]
  8. Zhang YQ, Li WJ, Zhang KY, Tian XP, Jiang Y et al. Massilia dura sp. nov., Massilia albidiflava sp. nov., Massilia plicata sp. nov. and Massilia lutea sp. nov., isolated from soils in China. Int J Syst Evol Microbiol 2006; 56:459–463 [View Article][PubMed]
    [Google Scholar]
  9. Orthová I, Kämpfer P, Glaeser SP, Kaden R, Busse HJ. Massilia norwichensis sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2015; 65:56–64 [View Article][PubMed]
    [Google Scholar]
  10. Weon HY, Kim BY, Son JA, Jang HB, Hong SK et al. Massilia aerilata sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 2008; 58:1422–1425 [View Article][PubMed]
    [Google Scholar]
  11. Weon HY, Kim BY, Hong SB, Jeon YA, Koo BS et al. Massilia niabensis sp. nov. and Massilia niastensis sp. nov., isolated from air samples. Int J Syst Evol Microbiol 2009; 59:1656–1660 [View Article][PubMed]
    [Google Scholar]
  12. Gallego V, Sánchez-Porro C, García MT, Ventosa A. Massilia aurea sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 2006; 56:2449–2453 [View Article][PubMed]
    [Google Scholar]
  13. Guo B, Liu Y, Gu Z, Shen L, Liu K et al. Massilia psychrophila sp. nov., isolated from an ice core. Int J Syst Evol Microbiol 2016; 66:4088–4093 [View Article][PubMed]
    [Google Scholar]
  14. Shen L, Liu Y, Gu Z, Xu B, Wang N et al. Massilia eurypsychrophila sp. nov. a facultatively psychrophilic bacteria isolated from ice core. Int J Syst Evol Microbiol 2015; 65:2124–2129 [View Article][PubMed]
    [Google Scholar]
  15. Gu Z, Liu Y, Xu B, Wang N, Jiao N et al. Massilia glaciei sp. nov., isolated from the Muztagh Glacier. Int J Syst Evol Microbiol 2017; 67:4075–4079 [View Article][PubMed]
    [Google Scholar]
  16. Wang H, Zhang X, Wang S, Zhao B, Lou K et al. Massilia violaceinigra sp. nov., a novel purple-pigmented bacterium isolated from glacier permafrost. Int J Syst Evol Microbiol 2018; 68:2271–2278 [View Article][PubMed]
    [Google Scholar]
  17. Sun LN, Yang ED, Cui DX, Ni YW, Wang YB et al. Massilia buxea sp. nov., isolated from a rock surface. Int J Syst Evol Microbiol 2017; 67:4390–4396 [View Article][PubMed]
    [Google Scholar]
  18. Kämpfer P, Falsen E, Busse HJ. Naxibacter varians sp. nov. and Naxibacter haematophilus sp. nov., and emended description of the genus Naxibacter . Int J Syst Evol Microbiol 2008; 58:1680–1684 [View Article][PubMed]
    [Google Scholar]
  19. Altankhuu K, Kim J. Massilia pinisoli sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2016; 66:3669–3674
    [Google Scholar]
  20. Ren M, Li X, Zhang Y, Jin Y, Li S et al. Massilia armeniaca sp. nov., isolated from desert soil. Int J Syst Evol Microbiol 2018; 68:2319–2324 [View Article][PubMed]
    [Google Scholar]
  21. Zheng BX, Bi QF, Hao XL, Zhou GW, Yang XR et al. Massilia phosphatilytica sp. nov., a phosphate solubilizing bacteria isolated from a long-term fertilized soil. Int J Syst Evol Microbiol 2017; 67:2514–2519 [View Article][PubMed]
    [Google Scholar]
  22. Lane DJ. 16S/23S rRNA sequencing. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester, UK: John Wiley & Sons Press; 1991 pp. 115–175
    [Google Scholar]
  23. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  24. Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  25. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  26. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  27. Rzhetsky A, Nei M. A simple method for estimating and testing minimum evolution trees. Mol Biol Evol 1992; 9:945–967
    [Google Scholar]
  28. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  29. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  30. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  31. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article]
    [Google Scholar]
  32. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017; 110:1281–1286 [View Article][PubMed]
    [Google Scholar]
  33. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  34. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  35. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  36. Stackebrandt E, Goebel BM. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Evol Microbiol 1994; 44:846–849 [View Article]
    [Google Scholar]
  37. Lányi B. Classical and rapid identification methods for medically important bacteria. Methods Microbiol 1987; 19:1–67
    [Google Scholar]
  38. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology Washington, DC: ASM Press; 2007 pp. 330–393
    [Google Scholar]
  39. Breznak JA, Costilow RN. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC, USA: American Society for Microbiology; 1994 pp. 137–154
    [Google Scholar]
  40. Miller LT. A single derivatization method for bacterial fatty acid methyl esters including hydroxy acids. J Clin Microbiol 1982; 16:584–586
    [Google Scholar]
  41. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  42. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  43. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  44. Austin DA, Moss MO. Numerical taxonomy of red-pigmented bacteria isolated from a lowl and river, with the description of a new taxon, Rugamonas rubra gen. nov. sp. nov. J Gen Microbiol 1986; 132:1899–1909
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.003449
Loading
/content/journal/ijsem/10.1099/ijsem.0.003449
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error