1887

Abstract

Strain M8-2, which was isolated from brackish lake water (Lake Sanaru) in Japan, was characterized for representation of a novel species in the genus Algoriphagus . Cells of strain M8-2 were aerobic, Gram-stain-negative and curved-rod-shaped (0.2–0.5 µm wide and 0.7–1.9 µm long). Strain M8-2 grew optimally at 30 °C, pH 6.5–7.5 and in the presence of 0.5–1.0 % (w/v) NaCl. MK-7 was the sole isoprenoid quinone. The major polar lipids were phosphatidylethanolamine, an unidentified phospholipid and an unidentified polar lipid. The predominant cellular fatty acids were iso-C15 : 0 and anteiso-C15 : 0. Phylogenetic analysis based on its 16S rRNA gene sequence showed that strain M8-2 belonged to the genus Algoriphagus and was closely related to Algoriphagus aquatilis A8-7, Algoriphagus boseongensis BS-R1, Algoriphagus aquaeductus T4, Algoriphagus olei CC-Hsuan-617, Algoriphagus shivajiensis NIO-S3 and Algoriphagus mannitolivorans DSM 15301 with sequence similarities of 96.6–97.4 %. Results of average nucleotide identity (<75 %) and digital DNA–DNA hybridization (<19 %) studies showed that M8-2 was distinct from its phylogenetic relatives. Based on the results of tests for acid production, the predominant cellular fatty acid composition, the DNA G+C content and phylogenetic position, a novel species in the genus Algoriphagus , with the name Algoriphagus sanaruensis sp. nov., is proposed for strain M8-2 (=JCM 31446=LMG 29969).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003447
2019-07-01
2019-10-18
Loading full text...

Full text loading...

References

  1. Bowman JP, Nichols CM, Gibson JA. Algoriphagus ratkowskyi gen. nov., sp. nov., Brumimicrobium glaciale gen. nov., sp. nov., Cryomorpha ignava gen. nov., sp. nov. and Crocinitomix catalasitica gen. nov., sp. nov., novel flavobacteria isolated from various polar habitats. Int J Syst Evol Microbiol 2003;53:1343–1355 [CrossRef][PubMed]
    [Google Scholar]
  2. Parte AC. LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 2014;42:D613–D616 [CrossRef][PubMed]
    [Google Scholar]
  3. Jia X, Jia B, Kim KH, Jeon CO. Algoriphagus aestuariicola sp. nov., isolated from estuary sediment. Int J Syst Evol Microbiol 2017;67:914–919 [CrossRef][PubMed]
    [Google Scholar]
  4. Han JR, Zhao JX, Wang ZJ, Chen GJ, Du ZJ. Algoriphagus resistens sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2017;67:1275–1280 [CrossRef][PubMed]
    [Google Scholar]
  5. Park S, Park JM, Yoon JH. Algoriphagus marisflavi sp. nov., isolated from water of an estuary environment. Int J Syst Evol Microbiol 2017;67:4168–4174 [CrossRef][PubMed]
    [Google Scholar]
  6. Han JR, Geng QL, Wang FQ, Du ZJ, Chen GJ. Algoriphagus marinus sp. nov., isolated from marine sediment and emended description of the genus Algoriphagus. Int J Syst Evol Microbiol 2017;67:2412–2417 [CrossRef][PubMed]
    [Google Scholar]
  7. Sun QL, Sun L. Description of Algoriphagus iocasae sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 2017;67:243–249 [CrossRef][PubMed]
    [Google Scholar]
  8. Park S, Park JM, Yoon JH. Algoriphagus marisflavi sp. nov., isolated from water of an estuary environment. Int J Syst Evol Microbiol 2017;67:4168–4174 [CrossRef][PubMed]
    [Google Scholar]
  9. Liu Y, Li H, Jiang JT, Liu YH, Song XF et al. Algoriphagus aquatilis sp. nov., isolated from a freshwater lake. Int J Syst Evol Microbiol 2009;59:1759–1763 [CrossRef][PubMed]
    [Google Scholar]
  10. Lee DH, Kahng HY, Lee SB. Algoriphagus jejuensis sp. nov., isolated from seawater. Int J Syst Evol Microbiol 2012;62:409–413 [CrossRef][PubMed]
    [Google Scholar]
  11. Park S, Ha MJ, Yoon SY, Jung YT, Yoon JH. Algoriphagus litorisediminis sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2016;66:5437–5443 [CrossRef][PubMed]
    [Google Scholar]
  12. Young CC, Lin SY, Arun AB, Shen FT, Chen WM et al. Algoriphagus olei sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2009;59:2909–2915 [CrossRef][PubMed]
    [Google Scholar]
  13. Yoon JH, Lee MH, Kang SJ, Oh TK. Algoriphagus terrigena sp. nov., isolated from soil. Int J Syst Evol Microbiol 2006;56:777–780 [CrossRef][PubMed]
    [Google Scholar]
  14. Kohli P, Nayyar N, Sharma A, Singh AK, Lal R. Algoriphagus roseus sp. nov., isolated from a hexachlorocyclohexane-contaminated dumpsite. Int J Syst Evol Microbiol 2016;66:3558–3565 [CrossRef][PubMed]
    [Google Scholar]
  15. Yoon JH, Kang SJ, Jung SY, Lee CH, Oh TK. Algoriphagus yeomjeoni sp. nov., isolated from a marine solar saltern in the Yellow Sea, Korea. Int J Syst Evol Microbiol 2005;55:865–870 [CrossRef][PubMed]
    [Google Scholar]
  16. Yang C, Li Y, Guo Q, Lai Q, Zheng T et al. Algoriphagus zhangzhouensis sp. nov., isolated from mangrove sediment. Int J Syst Evol Microbiol 2013;63:1621–1626 [CrossRef][PubMed]
    [Google Scholar]
  17. Maejima Y, Kushimoto K, Muraguchi Y, Fukuda K, Miura T et al. Proteobacteria and Bacteroidetes are major phyla of filterable bacteria passing through 0.22 μm pore size membrane filter, in Lake Sanaru, Hamamatsu, Japan. Biosci Biotechnol Biochem 2018;82:1260–1263 [CrossRef][PubMed]
    [Google Scholar]
  18. Komagata K, Suzuki K. Lipid and cell-wall analysis in bacterial systematics. Method Microbiol 1987;19:161–207
    [Google Scholar]
  19. Lechevalier MP, De Bievre C, Lechevalier H. Chemotaxonomy of aerobic Actinomycetes: phospholipid composition. Biochem Syst Ecol 1977;5:249–260 [CrossRef]
    [Google Scholar]
  20. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  21. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note101. Newark,DE: MIDI Inc; 1990
    [Google Scholar]
  22. Muraguchi Y, Kushimoto K, Ohtsubo Y, Suzuki T, Dohra H et al. Complete genome sequence of Algoriphagus sp. strain M8-2, isolated from a Brackish Lake. Genome Announc 2016;4:pii:e00347-16 [CrossRef][PubMed]
    [Google Scholar]
  23. Tamura K, Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 1993;10:512–526 [CrossRef][PubMed]
    [Google Scholar]
  24. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  25. Rzhetsky A, Nei M. Statistical properties of the ordinary least-squares, generalized least-squares and minimum-evolution methods of phylogenetic inference. J Mol Evol 1992;35:367–375 [CrossRef][PubMed]
    [Google Scholar]
  26. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 1994;22:4673–4680 [CrossRef][PubMed]
    [Google Scholar]
  27. Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  28. Park S, Park JM, Lee KC, Yoon JH. Algoriphagus boseongensis sp. nov., a member of the family Cyclobacteriaceae isolated from a tidal flat. Antonie van Leeuwenhoek 2014;105:523–531 [CrossRef][PubMed]
    [Google Scholar]
  29. Rau JE, Blotevogel KH, Fischer U. Algoriphagus aquaeductus sp. nov., isolated from a freshwater pipe. Int J Syst Evol Microbiol 2012;62:675–682 [CrossRef][PubMed]
    [Google Scholar]
  30. Kumar PA, Bhumika V, Ritika C, Bhaskar YV, Priyashanth P et al. Algoriphagus shivajiensis sp. nov., isolated from Cochin back water, India. Syst Appl Microbiol 2013;36:106–111 [CrossRef][PubMed]
    [Google Scholar]
  31. Yi H, Chun J. Hongiella mannitolivorans gen. nov., sp. nov., Hongiella halophila sp. nov. and Hongiella ornithinivorans sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2004;54:157–162 [CrossRef][PubMed]
    [Google Scholar]
  32. Nedashkovskaya OI, Kim SB, Kwon KK, Shin DS, Luo X et al. Proposal of Algoriphagus vanfongensis sp. nov., transfer of members of the genera Hongiella Yi and Chun 2004 emend. Nedashkovskaya et al. 2004 and Chimaereicella Tiago et al. 2006 to the genus Algoriphagus, and emended description of the genus Algoriphagus Bowman et al. 2003 emend. Nedashkovskaya et al. 2004. Int J Syst Evol Microbiol 2007;57:1988–1994 [CrossRef][PubMed]
    [Google Scholar]
  33. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  34. Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiology Today 2006;33:152–155
    [Google Scholar]
  35. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  36. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016;66:1100–1103 [CrossRef][PubMed]
    [Google Scholar]
  37. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003447
Loading
/content/journal/ijsem/10.1099/ijsem.0.003447
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error