1887

Abstract

A yellow-coloured bacterial strain, designated ZY74, was isolated from arsenic contaminated soil (34 mg kg) sample collected in Longkou, Hubei Province, PR China. Cells were Gram-stain-negative, aerobic, non-motile and rod-shaped. Strain ZY74 produced round, yellow-pigmented, smooth and opaque colonies. Based on the results of 16S rRNA gene sequence analysis, strain ZY74 was found to be affiliated with members of the genus Chitinophaga . Its closest members were Chitinophagabarathri YLT18 (97.72 %) and Chitinophaganiabensis JS13-10 (97.17 %). The genome size of strain ZY74 was 6.61 Mb, containing 5351 predicted protein-coding genes, with a DNA G+C content of 55.0 mol%. The average nucleotide identity values of strain ZY74 with C. barathri YLT18 and C. niabensis DSM 24787 were 76.12 and 73.32 %, respectively. The digital DNA–DNA hybridization values of strain ZY74 with C. barathri YLT18 and C. niabensis JS13-10 were 20.60 and 19.40 %, respectively. The major respiratory quinone was menaquinone 7 and the predominant fatty acids (>5 %) were iso-C15:0, C16 : 1ω5c and iso-C17 : 03-OH. On the basis of phylogenetic, genotypic, phenotypic and chemotaxonomic characterization, strain ZY74 represents a novel species in the genus Chitinophaga , for which the name Chitinophaga lutea sp. nov. is proposed. The type strain is ZY74 (=CCTCC AB2018369=KCTC 72039).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003445
2019-05-17
2019-08-25
Loading full text...

Full text loading...

References

  1. Kämpfer P, Lodders N, Falsen E. Hydrotalea flava gen. nov., sp. nov., a new member of the phylum Bacteroidetes and allocation of the genera Chitinophaga, Sediminibacterium, Lacibacter, Flavihumibacter, Flavisolibacter, Niabella, Niastella, Segetibacter, Parasegetibacter, Terrimonas, Ferruginibacter, Filimonas and Hydrotalea to the family Chitinophagaceae fam. nov. Int J Syst Evol Microbiol 2011;61:518–523 [CrossRef][PubMed]
    [Google Scholar]
  2. Sangkhobol V, Skerman VBD. Chitinophaga, a new genus of chitinolytic myxobacteria. Int J Syst Bacteriol 1981;31:285–293 [CrossRef]
    [Google Scholar]
  3. Zhang L, Liao S, Tan Y, Wang G, Wang D et al. Chitinophaga barathri sp. nov., isolated from mountain soil. Int J Syst Evol Microbiol 2015;65:4233–4238 [CrossRef][PubMed]
    [Google Scholar]
  4. Lv YY, Zhang XJ, Li AZ, Zou WL, Feng GD et al. Chitinophaga varians sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2018;68:2139–2144 [CrossRef][PubMed]
    [Google Scholar]
  5. Jin D, Kong X, Wang J, Sun J, Yu X et al. Chitinophaga caeni sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2018;68:2209–2213 [CrossRef][PubMed]
    [Google Scholar]
  6. Dahal RH, Kim J. Chitinophaga caseinilytica sp. nov., a casein hydrolysing bacterium isolated from forest soil. Arch Microbiol 2018;200:645–651 [CrossRef][PubMed]
    [Google Scholar]
  7. Chaudhary DK, Kim J. Chitinophaga humicola sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2018;68:751–757 [CrossRef][PubMed]
    [Google Scholar]
  8. Li L, Sun L, Shi N, Liu L, Guo H et al. Chitinophaga cymbidii sp. nov., isolated from Cymbidium goeringii roots. Int J Syst Evol Microbiol 2013;63:1800–1804 [CrossRef][PubMed]
    [Google Scholar]
  9. Weon HY, Yoo SH, Kim YJ, Son JA, Kim BY et al. Chitinophaga niabensis sp. nov. and Chitinophaga niastensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 2009;59:1267–1271 [CrossRef][PubMed]
    [Google Scholar]
  10. Proença DN, Nobre MF, Morais PV. Chitinophaga costaii sp. nov., an endophyte of Pinus pinaster, and emended description of Chitinophaga niabensis. Int J Syst Evol Microbiol 2014;64:1237–1243 [CrossRef][PubMed]
    [Google Scholar]
  11. Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 1985;49:1–7[PubMed]
    [Google Scholar]
  12. Fan H, Su C, Wang Y, Yao J, Zhao K et al. Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. J Appl Microbiol 2008;105:529–539 [CrossRef][PubMed]
    [Google Scholar]
  13. Wilson KH, Blitchington RB, Greene RC. Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. J Clin Microbiol 1990;28:1942–1946[PubMed]
    [Google Scholar]
  14. Kim O-S, Cho Y-J, Lee K, Yoon S-H, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef]
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  16. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  17. Rzhetsky A, Nei M. Statistical properties of the ordinary least-squares, generalized least-squares and minimum-evolution methods of phylogenetic inference. J Mol Evol 1992;35:367–375 [CrossRef][PubMed]
    [Google Scholar]
  18. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 2013;30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  19. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  20. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  21. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  22. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018;68:461–466 [CrossRef][PubMed]
    [Google Scholar]
  23. Dussault HP. An improved technique for staining red halophilic bacteria. J Bacteriol 1955;70:484–485[PubMed]
    [Google Scholar]
  24. Breznak JA, Costilow RN. Physicochemical factors in growth. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994; pp.137–154
    [Google Scholar]
  25. Cowan ST, Steel KJ. Manual for the Identification of Medical Bacteria London: Cambridge University Press; 1965
    [Google Scholar]
  26. Leifson E. Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 1963;85:1183–1184[PubMed]
    [Google Scholar]
  27. Tarrand JJ, Gröschel DH. Rapid, modified oxidase test for oxidase-variable bacterial isolates. J Clin Microbiol 1982;16:772–774[PubMed]
    [Google Scholar]
  28. Vila J, Gené A, García C, Vidal C, Barranco M et al. Rapid method for identifying Escherichia coli and species of the Proteeae tribe in urine. Med Clin 1992;99:601–604[PubMed]
    [Google Scholar]
  29. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press; 2001
    [Google Scholar]
  30. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note.vol. 101 Newark: MIDI Inc; 1990
    [Google Scholar]
  31. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979;47:87–95 [CrossRef]
    [Google Scholar]
  32. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  33. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  34. Xie CH, Yokota A. Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 2003;49:345–349 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003445
Loading
/content/journal/ijsem/10.1099/ijsem.0.003445
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error