1887

Abstract

A Gram-stain-negative, aerobic, non-motile and rod-shaped bacterium, designated strain X7X, was isolated from a rhizosphere soil sample of Nicotiana tabacum L. collected from a tobacco factory located in Kunming, south-western China. The cells showed oxidase-positive and catalase-positive reactions. Growth occurred at 20–40 °C and pH 6.0–8.0, with optimal growth at 30 °C and pH 7.0. The predominant respiratory quinone was MK-7. The major fatty acids were identified as iso-C15 : 0, iso-C17 : 0 3OH and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c). The cellular polar lipids contained phosphatidylethanolamine, an unidentified aminophospholipid, two unidentified glycolipids, four unidentified aminolipids and four unidentified lipids. The genomic DNA G+C content was 49.7 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain X7X should be affiliated to the genus Flavisolibacter . Results from further analysis showed that strain X7X had highest 16S rRNA gene sequence similarity to Flavisolibacter metallilatus TX0661 (96.4 %) and ‘ Flavisolibacter swuensis ’ SR2-4-2 (96.4 %), followed by other species of the genus Flavisolibacter . The polyphasic taxonomic characteristics indicated that strain X7X represents a novel species of the genus Flavisolibacter , for which the name Flavisolibacter nicotianae sp. nov. (type strain X7X=KCTC 62326=CGMCC 16451) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003440
2019-05-17
2019-09-22
Loading full text...

Full text loading...

References

  1. Yoon MH, Im WT, Wt I. Flavisolibacter ginsengiterrae gen. nov., sp. nov. and Flavisolibacter ginsengisoli sp. nov., isolated from ginseng cultivating soil. Int J Syst Evol Microbiol 2007;57:1834–1839 [CrossRef][PubMed]
    [Google Scholar]
  2. Baik KS, Kim MS, Lee JH, Lee SS, Im WT et al. Flavisolibacter rigui sp. nov., isolated from freshwater of an artificial reservoir and emended description of the genus Flavisolibacter. Int J Syst Evol Microbiol 2014;64:4038–4042 [CrossRef][PubMed]
    [Google Scholar]
  3. Lee JJ, Kang MS, Kim GS, Lee CS, Lim S et al. Flavisolibacter tropicus sp. nov., isolated from tropical soil. Int J Syst Evol Microbiol 2016;66:3413–3419 [CrossRef][PubMed]
    [Google Scholar]
  4. Kim DU, Lee H, Lee S, Kim SG, Park AY et al. Flavisolibacter metallilatus sp. nov., isolated from an automotive air conditioning system and emended description of the genus Flavisolibacter. Int J Syst Evol Microbiol 2018;68:917–923 [CrossRef][PubMed]
    [Google Scholar]
  5. Zhao Y, Liu Q, Kang MS, Jin F, Yu H et al. Flavisolibacter ginsenosidimutans sp. nov., with ginsenoside-converting activity isolated from soil used for cultivating ginseng. Int J Syst Evol Microbiol 2015;65:4868–4872 [CrossRef][PubMed]
    [Google Scholar]
  6. Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 1985;49:1–7[PubMed]
    [Google Scholar]
  7. Skerman VBD. A Guide to the Identification of the Genera of Bacteria, 2nded. Baltimore: Williams & Wilkins; 1967
    [Google Scholar]
  8. Gregersen T. Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 1978;5:123–127 [CrossRef]
    [Google Scholar]
  9. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005;55:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
  10. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington: American Society for Microbiology; 1994; pp.607–655
    [Google Scholar]
  11. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  12. Groth I, Schumann P, Weiss N, Martin K, Rainey FA. Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 1996;46:234–239 [CrossRef][PubMed]
    [Google Scholar]
  13. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 1979;47:87–95 [CrossRef]
    [Google Scholar]
  14. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  15. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI technical note 101. Newwark, DE: MIDI Inc; 1990
    [Google Scholar]
  16. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China) and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007;57:1424–1428 [CrossRef][PubMed]
    [Google Scholar]
  17. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1618 [CrossRef][PubMed]
    [Google Scholar]
  18. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  19. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  20. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  21. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  22. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  23. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  24. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012;1:18 [CrossRef][PubMed]
    [Google Scholar]
  25. Delcher AL, Harmon D, Kasif S, White O, Salzberg SL. Improved microbial gene identification with GLIMMER. Nucleic Acids Res 1999;27:4636–4641 [CrossRef][PubMed]
    [Google Scholar]
  26. Joo ES, Cha S, Kim MK, Jheong W, Seo T et al. Flavisolibacter swuensis sp. nov. isolated from soil. J Microbiol 2015;53:442–447 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003440
Loading
/content/journal/ijsem/10.1099/ijsem.0.003440
Loading

Data & Media loading...

Supplementary data

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error