1887

Abstract

A Gram-stain-positive, aerobic, coccoid-shaped, non-spore-forming actinobacterial strain, designated M5W7-7, was isolated from a hot spring soil sample collected from Anshan, Liaoning province, PR China. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain M5W7-7 clustered closely with species of the genus Kocuria , and showed the highest sequence similarity of 97.1 % to Kocuria subflava YIM 13062. Strain M5W7-7 grew at 10–37 °C (optimum, 37 °C), pH6.0–11.0 (pH 6.0–7.0) and in the presence of 0–7 % (w/v) NaCl (0 %). Substrate mycelia and aerial mycelia were not formed, and diffusible pigments were not observed on any media tested. Strain M5W7-7 contained MK-6(H2) and MK-7(H2) as the dominant menaquinones. The polar lipid profile of strain M5W7-7 contained diphosphatidylglycerol, phosphatidylglycerol, two unidentified glycolipids, an unidentified phospholipid and an unidentified lipid. The predominant whole-cell sugars were galactose and glucose. The predominant fatty acid was anteiso-C15 : 0. The DNA G+C content of strain M5W7-7 was 67.0 mol%. On the basis of phylogenetic relationships, phenotypic characterization and chemotaxonomic analyses, strain M5W7-7 represents a novel species of the genus Kocuria , for which the name Kocuria soli sp. nov. is proposed. The type strain is M5W7-7 (=KCTC 49195 =CGMCC 1.13744).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003438
2019-05-15
2021-09-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/7/2064.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003438&mimeType=html&fmt=ahah

References

  1. Stackebrandt E, Koch C, Gvozdiak O, Schumann P. Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int J Syst Bacteriol 1995; 45:682–692 [View Article][PubMed]
    [Google Scholar]
  2. Dastager SG, Tang SK, Srinivasan K, Lee JC, Li WJ et al. Kocuria indica sp. nov., isolated from a sediment sample. Int J Syst Evol Microbiol 2014; 64:869–874 [View Article][PubMed]
    [Google Scholar]
  3. Kim SB, Nedashkovskaya OI, Mikhailov VV, Han SK, Kim KO et al. Kocuria marina sp. nov., a novel actinobacterium isolated from marine sediment. Int J Syst Evol Microbiol 2004; 54:1617–1620 [View Article][PubMed]
    [Google Scholar]
  4. Li WJ, Zhang YQ, Schumann P, Chen HH, Hozzein WN et al. Kocuria aegyptia sp. nov., a novel actinobacterium isolated from a saline, alkaline desert soil in Egypt. Int J Syst Evol Microbiol 2006; 56:733–737 [View Article][PubMed]
    [Google Scholar]
  5. Seo YB, Kim DE, Kim GD, Kim HW, Nam SW et al. Kocuria gwangalliensis sp. nov., an actinobacterium isolated from seawater. Int J Syst Evol Microbiol 2009; 59:2769–2772 [View Article][PubMed]
    [Google Scholar]
  6. Kovács G, Burghardt J, Pradella S, Schumann P, Stackebrandt E et al. Kocuria palustris sp. nov. and Kocuria rhizophila sp. nov., isolated from the rhizoplane of the narrow-leaved cattail (Typha angustifolia). Int J Syst Bacteriol 1999; 49:167–173 [View Article][PubMed]
    [Google Scholar]
  7. Park EJ, Kim MS, Roh SW, Jung MJ, Bae JW. Kocuria atrinae sp. nov., isolated from traditional Korean fermented seafood. Int J Syst Evol Microbiol 2010; 60:914–918 [View Article][PubMed]
    [Google Scholar]
  8. Park EJ, Roh SW, Kim MS, Jung MJ, Shin KS et al. Kocuria koreensis sp. nov., isolated from fermented seafood. Int J Syst Evol Microbiol 2010; 60:140–143 [View Article][PubMed]
    [Google Scholar]
  9. Yun JH, Roh SW, Jung MJ, Kim MS, Park EJ et al. Kocuria salsicia sp. nov., isolated from salt-fermented seafood. Int J Syst Evol Microbiol 2011; 61:286–289 [View Article][PubMed]
    [Google Scholar]
  10. Braun MS, Wang E, Zimmermann S, Boutin S, Wink M. Kocuria uropygioeca sp. nov. and Kocuria uropygialis sp. nov., isolated from the preen glands of Great Spotted Woodpeckers (Dendrocopos major). Syst Appl Microbiol 2018; 41:38–43 [View Article][PubMed]
    [Google Scholar]
  11. Braun MS, Wang E, Zimmermann S, Boutin S, Wagner H et al. Kocuria tytonicola, new bacteria from the preen glands of American barn owl (Tyto furcate). Syst Appl Microbiol 2018; 2020:S072330051–1
    [Google Scholar]
  12. Braun MS, Wang E, Zimmermann S, Wagner H, Wink M. Kocuria tytonis sp. nov., isolated from the uropygial gland of an American barn owl (Tyto furcata). Int J Syst Evol Microbiol 2019; 69:447–451 [View Article][PubMed]
    [Google Scholar]
  13. Wang K, Zhang L, Liu Y, Pan Y, Meng L et al. Kocuria dechangensis sp. nov., an actinobacterium isolated from saline and alkaline soils. Int J Syst Evol Microbiol 2015; 65:3024–3030 [View Article][PubMed]
    [Google Scholar]
  14. Wj L, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., anovel actinobacterium isolated from forest soil in Yunnan (China) and emended description of the genus Georgenia . Int J Syst EvolMicrobiol 2007; 57:1424–1428
    [Google Scholar]
  15. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  16. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  17. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  18. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  19. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  20. Tamura S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2015: submitted
    [Google Scholar]
  21. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  22. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–IN1 [View Article]
    [Google Scholar]
  23. Magee CM, Rodeheaver G, Edgerton MT, Edlich RF. A more reliable gram staining technic for diagnosis of surgical infections. Am J Surg 1975; 130:341–346 [View Article][PubMed]
    [Google Scholar]
  24. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966; 16:313–340 [View Article]
    [Google Scholar]
  25. Kelly KL. Inter-Society Color Council-National Bureau of Standards Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  26. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005; 55:1149–1153 [View Article][PubMed]
    [Google Scholar]
  27. Cappuccino JG, Sherman N. Microbiology: A Laboratory Manual, 6th ed. San Francisco: Benjamin Cummings Pearson Education; 2002
    [Google Scholar]
  28. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978; 24:710–715 [View Article][PubMed]
    [Google Scholar]
  29. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  30. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  31. Guo L, Tuo L, Habden X, Zhang Y, Liu J et al. Allosalinactinospora lopnorensis gen. nov., sp. nov., a new member of the family Nocardiopsaceae isolated from soil. Int J Syst Evol Microbiol 2015; 65:206–213 [View Article][PubMed]
    [Google Scholar]
  32. Staneck JL, Roberts GD. Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 1974; 28:226–231[PubMed]
    [Google Scholar]
  33. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  34. Jiang Z, Zhang WH, Yuan CG, Chen JY, Cao LX et al. Kocuria subflava sp. nov., isolated from marine sediment from the Indian Ocean. Antonie van Leeuwenhoek 2015; 108:1349–1355 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003438
Loading
/content/journal/ijsem/10.1099/ijsem.0.003438
Loading

Data & Media loading...

Supplements

Supplementary data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error