1887

Abstract

Two Gram-stain-negative, rod-shaped bacterial strains (C5 and C16), isolated from root nodules of Phaseolus vulgaris L. in Jiangxi Province, PR China, were characterized by using a polyphasic taxonomical approach. The phylogenetic analysis of the 16S rRNA gene and three concatenated housekeeping genes (recA–glnII–atpD) revealed that C5 and C16 were members of the genus Rhizobium , yet were distinct from known species. The case for strain C5 representing a novel species was supported by genomic results. Pairwise digital DNA–DNA hybridization and average nucleotide identity values were much lower than the proposed and generally accepted species boundaries. The genome-based phylogenetic tree reconstructed by using the up-to-date bacterial core gene set consisting of 92 genes showed that the strains formed a monophyletic branch, further supporting this result. The symbiotic genes of nodC and nifH were identified in both strains; each could nodulate Phaseolus vulgaris and Glycine max but not Leucaena leucocephala, Pisum sativum or Medicago sativa plants. Major cellular fatty acids of C5 were summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c; 58.8 %), C18 : 1 ω7c 11-methyl (14.2 %) and C18 : 0 (8.1 %). The DNA G+C content of C5 was 61.4 mol%. Based on these genomic, chemotaxonomic and phenotypic characteristics, we propose a novel species: Rhizobium chutanense sp. nov. The type strain is C5 (=CCTCC AB 2018143=LMG 30777).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003430
2019-05-15
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/7/2049.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003430&mimeType=html&fmt=ahah

References

  1. Frank B. Über die pilzsymbiose der Leguminosen. Ber Dtsch Bot Ges 1889; 7:332–346
    [Google Scholar]
  2. Román-Ponce B, Jing Zhang Y, Soledad Vásquez-Murrieta M, Hua Sui X, Feng Chen W et al. Rhizobium acidisoli sp. nov., isolated from root nodules of Phaseolus vulgaris in acid soils. Int J Syst Evol Microbiol 2016; 66:398–406 [View Article][PubMed]
    [Google Scholar]
  3. Aserse AA, Woyke T, Kyrpides NC, Whitman WB, Lindström K. Draft genome sequence of type strain HBR26T and description of Rhizobium aethiopicum sp. nov. Stand Genomic Sci 2017; 12:14 [View Article][PubMed]
    [Google Scholar]
  4. Mnasri B, Liu TY, Saidi S, Chen WF, Chen WX et al. Rhizobium azibense sp. nov., a nitrogen fixing bacterium isolated from root-nodules of Phaseolus vulgaris . Int J Syst Evol Microbiol 2014; 64:1501–1506 [View Article][PubMed]
    [Google Scholar]
  5. Ribeiro RA, Martins TB, Ormeño-Orrillo E, Marçon Delamuta JR, Rogel MA et al. Rhizobium ecuadorense sp. nov., an indigenous N2-fixing symbiont of the Ecuadorian common bean (Phaseolus vulgaris L.) genetic pool. Int J Syst Evol Microbiol 2015; 65:3162–3169 [View Article][PubMed]
    [Google Scholar]
  6. Cordeiro AB, Ribeiro RA, Helene LCF, Hungria M. Rhizobium esperanzae sp. nov., a N2-fixing root symbiont of Phaseolus vulgaris from Mexican soils. Int J Syst Evol Microbiol 2017; 67:3937–3945 [View Article][PubMed]
    [Google Scholar]
  7. Yan J, Yan H, Liu LX, Chen WF, Zhang XX et al. Rhizobium hidalgonense sp. nov., a nodule endophytic bacterium of Phaseolus vulgaris in acid soil. Arch Microbiol 2017; 199:97–104 [View Article][PubMed]
    [Google Scholar]
  8. López-López A, Rogel MA, Ormeño-Orrillo E, Martínez-Romero J, Martínez-Romero E. Phaseolus vulgaris seed-borne endophytic community with novel bacterial species such as Rhizobium endophyticum sp. nov. Syst Appl Microbiol 2010; 33:322–327 [View Article][PubMed]
    [Google Scholar]
  9. Segovia L, Young JP, Martínez-Romero E. Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. Int J Syst Bacteriol 1993; 43:374–377 [View Article][PubMed]
    [Google Scholar]
  10. dall'agnol RF, Ribeiro RA, Ormeño-Orrillo E, Rogel MA, Delamuta JR et al. Rhizobium freirei sp. nov., a symbiont of Phaseolus vulgaris that is very effective at fixing nitrogen. Int J Syst Evol Microbiol 2013; 63:4167–4173 [View Article][PubMed]
    [Google Scholar]
  11. Amarger N, MacHeret V, Laguerre G. Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. Int J Syst Bacteriol 1997; 47:996–1006 [View Article][PubMed]
    [Google Scholar]
  12. Ribeiro RA, Rogel MA, López-López A, Ormeño-Orrillo E, Barcellos FG et al. Reclassification of Rhizobium tropici type A strains as Rhizobium leucaenae sp. nov. Int J Syst Evol Microbiol 2012; 62:1179–1184 [View Article][PubMed]
    [Google Scholar]
  13. Valverde A, Igual JM, Peix A, Cervantes E, Velázquez E. Rhizobium lusitanum sp. nov. a bacterium that nodulates Phaseolus vulgaris . Int J Syst Evol Microbiol 2006; 56:2631–2637 [View Article][PubMed]
    [Google Scholar]
  14. López-López A, Rogel-Hernández MA, Barois I, Ortiz Ceballos AI, Martínez J et al. Rhizobium grahamii sp. nov., from nodules of Dalea leporina, Leucaena leucocephala and Clitoria ternatea, and Rhizobium mesoamericanum sp. nov., from nodules of Phaseolus vulgaris, siratro, cowpea and Mimosa pudica . Int J Syst Evol Microbiol 2012; 62:2264–2271 [View Article][PubMed]
    [Google Scholar]
  15. Dall'agnol RF, Ribeiro RA, Delamuta JR, Ormeño-Orrillo E, Rogel MA et al. Rhizobium paranaense sp. nov., an effective N2-fixing symbiont of common bean (Phaseolus vulgaris L.) with broad geographical distribution in Brazil. Int J Syst Evol Microbiol 2014; 64:3222–3229 [View Article][PubMed]
    [Google Scholar]
  16. Ramírez-Bahena MH, García-Fraile P, Peix A, Valverde A, Rivas R et al. Revision of the taxonomic status of the species Rhizobium leguminosarum (Frank 1879) Frank 1889AL, Rhizobium phaseoli Dangeard 1926AL and Rhizobium trifolii Dangeard 1926AL. R. trifolii is a later synonym of R. leguminosarum. Reclassification of the strain R. leguminosarum DSM 30132 (=NCIMB 11478) as Rhizobium pisi sp. nov. Int J Syst Evol Microbiol 2008; 58:2484–2490 [View Article][PubMed]
    [Google Scholar]
  17. Martínez-Romero E, Segovia L, Mercante FM, Franco AA, Graham P et al. Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Bacteriol 1991; 41:417–426 [View Article][PubMed]
    [Google Scholar]
  18. Wang F, Wang ET, Wu LJ, Sui XH, Li Y et al. Rhizobium vallis sp. nov., isolated from nodules of three leguminous species. Int J Syst Evol Microbiol 2011; 61:2582–2588 [View Article][PubMed]
    [Google Scholar]
  19. Zurdo-Piñeiro JL, García-Fraile P, Rivas R, Peix A, León-Barrios M et al. Rhizobia from Lanzarote, the Canary Islands, that nodulate Phaseolus vulgaris have characteristics in common with Sinorhizobium meliloti isolates from mainland Spain. Appl Environ Microbiol 2009; 75:2354–2359 [View Article][PubMed]
    [Google Scholar]
  20. Mnasri B, Saïdi S, Chihaoui SA, Mhamdi R. Sinorhizobium americanum symbiovar mediterranense is a predominant symbiont that nodulates and fixes nitrogen with common bean (Phaseolus vulgaris L.) in a Northern Tunisian field. Syst Appl Microbiol 2012; 35:263–269 [View Article][PubMed]
    [Google Scholar]
  21. Han SZ, Wang ET, Chen WX. Diverse bacteria isolated from root nodules of Phaseolus vulgaris and species within the genera Campylotropis and Cassia grown in China. Syst Appl Microbiol 2005; 28:265–276 [View Article][PubMed]
    [Google Scholar]
  22. Mousavi SA, Willems A, Nesme X, De Lajudie P, Lindström K. Revised phylogeny of Rhizobiaceae: proposal of the delineation of Pararhizobium gen. nov., and 13 new species combinations. Syst Appl Microbiol 2015; 38:84–90 [View Article][PubMed]
    [Google Scholar]
  23. Wang FQ, Wang ET, Liu J, Chen Q, Sui XH et al. Mesorhizobium albiziae sp. nov., a novel bacterium that nodulates Albizia kalkora in a subtropical region of China. Int J Syst Evol Microbiol 2007; 57:1192–1199 [View Article][PubMed]
    [Google Scholar]
  24. Cao Y, Wang E-T, Zhao L, Chen W-M, Wei G-H. Diversity and distribution of rhizobia nodulated with Phaseolus vulgaris in two ecoregions of China. Soil Biol Biochem 2014; 78:128–137 [View Article]
    [Google Scholar]
  25. Tong W, Li X, Huo Y, Zhang L, Cao Y et al. Genomic insight into the taxonomy of Rhizobium genospecies that nodulate Phaseolus vulgaris . Syst Appl Microbiol 2018; 41:300–310 [View Article][PubMed]
    [Google Scholar]
  26. Vincent JM. In Handbook IBP. (editor) A Manual for the Practical Study of the Root-Nodule Bacteria Oxford and Edinburgh: Blackwell Scientific Publications; 1970 pp. 73–97
    [Google Scholar]
  27. Chen WX, Tan ZY, Gao JL, Li Y, Wang ET. Rhizobium hainanense sp. nov., isolated from tropical legumes. Int J Syst Bacteriol 1997; 47:870–873 [View Article][PubMed]
    [Google Scholar]
  28. Vinuesa P, Silva C, Werner D, Martínez-Romero E. Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol Phylogenet Evol 2005; 34:29–54 [View Article][PubMed]
    [Google Scholar]
  29. Laguerre G, Nour SM, MacHeret V, Sanjuan J, Drouin P et al. Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 2001; 147:981–993 [View Article][PubMed]
    [Google Scholar]
  30. Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 1977; 74:5463–5467 [View Article][PubMed]
    [Google Scholar]
  31. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013; 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  32. Campanella JJ, Bitincka L, Smalley J. MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinformatics 2003; 4:29 [View Article][PubMed]
    [Google Scholar]
  33. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
  34. Chun J, Oren A, Ventosa A, Christensen H, Arahal DR et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 2018; 68:461–466 [View Article][PubMed]
    [Google Scholar]
  35. Jiao YS, Yan H, Ji ZJ, Liu YH, Sui XH et al. Rhizobium sophorae sp. nov. and Rhizobium sophoriradicis sp. nov., nitrogen-fixing rhizobial symbionts of the medicinal legume Sophora flavescens . Int J Syst Evol Microbiol 2015; 65:497–503 [View Article][PubMed]
    [Google Scholar]
  36. Wilson K. Preparation of genomic DNA from bacteria. Current Protocols in Molecular Biology New York: Green Publishing & Wiley Interscience; 1987 pp. 2.4.1–2.4.2
    [Google Scholar]
  37. Luo R, Liu B, Xie Y, Li Z, Huang W et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012; 1:8–18 [View Article][PubMed]
    [Google Scholar]
  38. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 2014; 42:D206–D214 [View Article][PubMed]
    [Google Scholar]
  39. Rosselló-Móra R, Urdiain M, López-López A. DNA-DNA Hybridization. Method Microbiol 2011; 38:325–347
    [Google Scholar]
  40. Meier-Kolthoff JP, Klenk HP, Göker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014; 64:352–356 [View Article][PubMed]
    [Google Scholar]
  41. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  42. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  43. Young JM, Kuykendall LD, Martínez-Romero E, Kerr A, Sawada H. A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola De Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis . Int J Syst Evol Microbiol 2001; 51:89–103 [View Article][PubMed]
    [Google Scholar]
  44. Kaschuk G, Hungria M, Andrade DS, Campo RJ. Genetic diversity of rhizobia associated with common bean (Phaseolus vulgaris L.) grown under no-tillage and conventional systems in Southern Brazil. Appl Soil Ecol 2006; 32:210–220 [View Article]
    [Google Scholar]
  45. Na SI, Kim YO, Yoon SH, Ha SM, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article][PubMed]
    [Google Scholar]
  46. Dong XZ, Cai MY. Determinative Manual for Routine Bacteriology Beijing: Scientific Press (in Chinese); 2001
    [Google Scholar]
  47. Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Tech Bull Regist Med Technol 1966; 36:493–496 [View Article][PubMed]
    [Google Scholar]
  48. Zhang X, Li B, Wang H, Sui X, Ma X et al. Rhizobium petrolearium sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2012; 62:1871–1876 [View Article][PubMed]
    [Google Scholar]
  49. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, Technical Note 101. Newark, DE: MIDI; 1990
    [Google Scholar]
  50. Tighe SW, De Lajudie P, Dipietro K, Lindström K, Nick G et al. Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the sherlock microbial identification system. Int J Syst Evol Microbiol 2000; 50 Pt 2:787–801 [View Article][PubMed]
    [Google Scholar]
  51. van Berkum P, Beyene D, Eardly BD. Phylogenetic relationships among Rhizobium species nodulating the common bean (Phaseolus vulgaris L.). Int J Syst Bacteriol 1996; 46:240–244 [View Article][PubMed]
    [Google Scholar]
  52. Saïdi S, Ramírez-Bahena MH, Santillana N, Zúñiga D, Álvarez-Martínez E et al. Rhizobium laguerreae sp. nov. nodulates Vicia faba on several continents. Int J Syst Evol Microbiol 2014; 64:242–247 [View Article][PubMed]
    [Google Scholar]
  53. González V, Santamaría RI, Bustos P, Hernández-González I, Medrano-Soto A et al. The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci USA 2006; 103:3834–3839 [View Article][PubMed]
    [Google Scholar]
  54. Rashid MH, Young JP, Everall I, Clercx P, Willems A et al. Average nucleotide identity of genome sequences supports the description of Rhizobium lentis sp. nov., Rhizobium bangladeshense sp. nov. and Rhizobium binae sp. nov. from lentil (Lens culinaris) nodules. Int J Syst Evol Microbiol 2015; 65:3037–3045 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003430
Loading
/content/journal/ijsem/10.1099/ijsem.0.003430
Loading

Data & Media loading...

Supplements

Supplementary data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error