1887

Abstract

Strain KYPY4, isolated from a water sample taken from the Funglin stream in Taiwan, was characterized using a polyphasic taxonomic approach. The 16S rRNA gene sequence of strain KYPY4 was closely related to CCUG 30898 (97.1 %) followed by L10 (96.9 %) and KIN192 (96.8 %). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain KYPY4 belonged to the genus and formed a distinct phyletic line with L10 and TTM-94. The draft genome of strain KYPY4 was approximately 4.93 Mb in size with a G+C content of 70.1 mol%. Strain KYPY4 showed 73.4–76.9 % average nucleotide identity and 21.3–22.5 % digital DNA–DNA hybridization identity with the strains of other related species in the group. Cells of strain KYPY4 were Gram-stain-negative, aerobic, motile, surrounded by a thick capsule and formed light orange colonies. Optimal growth occurred at 30 °C, pH 7 and 0 % NaCl. Strain KYPY4 contained summed feature 3 (comprising Cω7 and/or Cω6), C and Cω7 as the predominant fatty acids. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and several uncharacterized polar lipids. The major respiratory quinone was Q-8. On the basis of phenotypic and genotypic properties and phylogenetic inference, strain KYPY4 should be classified as a novel species of the genus , for which the name sp. nov. is proposed. The type strain is KYPY4 (=BCRC 81010=KCTC 52441).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003429
2019-08-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/8/2226.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003429&mimeType=html&fmt=ahah

References

  1. Lechner U, Brodkorb D, Geyer R, Hause G, Härtig C et al. Aquincola tertiaricarbonis gen. nov., sp. nov., a tertiary butyl moiety-degrading bacterium. Int J Syst Evol Microbiol 2007; 57:1295–1303 [View Article][PubMed]
    [Google Scholar]
  2. Garrity GM, Bell JA, Lilburn T, Order I. Burkholderiales ord. nov. In Brenner DJ, Krieg NR, Staley JT, Garrity GM. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 2 New York: Springer; 2005 pp. 575–763
    [Google Scholar]
  3. Piveteau P, Fayolle F, Vandecasteele JP, Monot F. Biodegradation of tert-butyl alcohol and related xenobiotics by a methylotrophic bacterial isolate. Appl Microbiol Biotechnol 2001; 55:369–373 [View Article][PubMed]
    [Google Scholar]
  4. Chen WM, Chen YL, Li YS, Sheu SY. Aquincola amnicola sp. nov., isolated from a freshwater river. Arch Microbiol 2018; 200:811–817 [View Article][PubMed]
    [Google Scholar]
  5. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991; 173:697–703 [View Article][PubMed]
    [Google Scholar]
  6. Anzai Y, Kudo Y, Oyaizu H. The phylogeny of the genera Chryseomonas, Flavimonas and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol 1997; 47:249–251 [View Article][PubMed]
    [Google Scholar]
  7. Chen WM, Laevens S, Lee TM, Coenye T, De Vos P et al. Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 2001; 51:1729–1735 [View Article][PubMed]
    [Google Scholar]
  8. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1617 [View Article][PubMed]
    [Google Scholar]
  9. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007; 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  10. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 1999; 41:95–98
    [Google Scholar]
  11. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  12. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  13. Kluge AG, Farris JS. Quantitative phyletics and the evolution of anurans. Syst Zool 1969; 18:1–32 [View Article]
    [Google Scholar]
  14. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993; 10:1073–1095 [View Article][PubMed]
    [Google Scholar]
  15. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018; 35:1547–1549 [View Article][PubMed]
    [Google Scholar]
  16. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016; 32:3047–3048 [View Article][PubMed]
    [Google Scholar]
  17. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  18. Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 2014; 30:2068–2069 [View Article][PubMed]
    [Google Scholar]
  19. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article][PubMed]
    [Google Scholar]
  20. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  21. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  22. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  23. Na SI, Kim YO, Yoon SH, Ha SM, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018; 56:280–285 [View Article][PubMed]
    [Google Scholar]
  24. Doetsch RN, Robinow CF. Determinative and cytological light microscopy. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; 1994 pp. 21–41
    [Google Scholar]
  25. Schlegel HG, Lafferty R, Krauss I. The isolation of mutants not accumulating poly-beta-hydroxybutyric acid. Arch Mikrobiol 1970; 71:283–294 [View Article][PubMed]
    [Google Scholar]
  26. Spiekermann P, Rehm BH, Kalscheuer R, Baumeister D, Steinbüchel A. A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 1999; 171:73–80 [View Article][PubMed]
    [Google Scholar]
  27. Breznak JA, Costilow RN. Physicochemical factors in growth. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007 pp. 309–329
    [Google Scholar]
  28. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematic. In Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR et al. (editors) Methods for General and Molecular Bacteriology, 3rd ed. Washington, DC: American Society for Microbiology; 2007 pp. 330–393
    [Google Scholar]
  29. Wen CM, Tseng CS, Cheng CY, Li YK, Yk L. Purification, characterization and cloning of a chitinase from Bacillus sp. NCTU2. Biotechnol Appl Biochem 2002; 35:213–219 [View Article][PubMed]
    [Google Scholar]
  30. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50:1861–1868 [View Article][PubMed]
    [Google Scholar]
  31. Nokhal T-H, Schlegel HG. Taxonomic study of Paracoccus denitrificans . Int J Syst Bacteriol 1983; 33:26–37 [View Article]
    [Google Scholar]
  32. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  33. Embley TM, Wait R. Structural lipids of eubacteria. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994 pp. 121–161
    [Google Scholar]
  34. Collins MD. Isoprenoid quinones. In Goodfellow M, O’Donnell AG. (editors) Chemical Methods in Prokaryotic Systematics Chichester: Wiley; 1994 pp. 265–309
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003429
Loading
/content/journal/ijsem/10.1099/ijsem.0.003429
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error