gen. nov., sp. nov., isolated from an oil-contaminated soil Free

Abstract

A Gram-stain-negative, aerobic, flagellated, rod-shaped bacterium, designated strain NAU-10, was isolated from an oil-contaminated soil collected in PR China. Strain NAU-10 could grow at 10–42 °C (optimum, 30 °C), pH 5.0–9.0 (pH 7.0) and in the presence of 0–2.5 % (w/v) NaCl (0.5 % in Luria–Bertani broth). The major fatty acids were C 7 (38.6 %), C 6 (9.8 %), C 2-OH (9.1 %), summed feature 3 (8.7 %), C 3-OH (7.2 %) and C (6.7 %). The major respiratory quinones were Q9 and Q10. The total polar lipids were lipid, aminolipid, phospholipid, phosphatidylglycerol and phosphatidylethanolamine. Strain NAU-10 shared the highest 16S rRNA gene sequence similarities with 3-p (95.9 %), TH16 (95.3 %) and CC-LY736 (95.3 %), and constituted a sub-cluster within the family . The DNA G+C content of strain NAU-10 was 68.2 mol% based on its draft genome sequence. Genome annotation of strain NAU-10 predicted the presence of 4309 genes, of which 4237 are coding proteins and 72 are RNA genes. Based on its phenotypic and chemotaxonomic characteristics, as well as the analysis of the 16S rRNA gene sequences, it was concluded that strain NAU-10 represents a novel genus, for which the name gen. nov., is proposed. The type species of this genus is with the type strain NAU-10 (=KCTC 62417=CCTCC AB 2018015).

Keyword(s): Rhodospirillaceae , soil and taxonomy
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003428
2019-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/8/2220.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003428&mimeType=html&fmt=ahah

References

  1. Lin SY, Hameed A, Shen FT, Liu YC, Hsu YH et al. Description of Niveispirillum fermenti gen. nov., sp. nov., isolated from a fermentor in Taiwan, transfer of Azospirillum irakense (1989) as Niveispirillum irakense comb. nov., and reclassification of Azospirillum amazonense (1983) as Nitrospirillum amazonense gen. nov. Antonie van Leeuwenhoek 2014; 105:1149–1162 [View Article][PubMed]
    [Google Scholar]
  2. Cavanaugh CM, McKiness Z, Newton ILG, Stewart FJ. The Prokaryotes 2006 10.1007/0-387-30741-9_18
    [Google Scholar]
  3. Kawasaki H, Hoshino Y, Kuraishi H, Yamasato K et al. Rhodocista centenaria gen. nov., sp. nov., a cyst-forming anoxygenic photosynthetic bacterium and its phylogenetic position in the Proteobacteria alpha group. J Gen Appl Microbiol 1992; 38:541–551 [View Article]
    [Google Scholar]
  4. Castenholz RW, Pierson BK. Isolation of members of the family Chloroflexaceae . The Prokaryotes 1981290–298
    [Google Scholar]
  5. Young CC, Hupfer H, Siering C, Ho MJ, Arun AB et al. Azospirillum rugosum sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 2008; 58:959–963 [View Article][PubMed]
    [Google Scholar]
  6. Cai H, Wang Y, Xu H, Yan Z, Jia B et al. Niveispirillum cyanobacteriorum sp. nov., a nitrogen-fixing bacterium isolated from cyanobacterial aggregates in a Eutrophic lake. Int J Syst Evol Microbiol 2015; 65:2537–2541 [View Article][PubMed]
    [Google Scholar]
  7. Amoozegar MA, Makhdoumi-Kakhki A, Ramezani M, Nikou MM, Fazeli SA et al. Limimonas halophila gen. nov., sp. nov., an extremely halophilic bacterium in the family Rhodospirillaceae . Int J Syst Evol Microbiol 2013; 63:1562–1567 [View Article][PubMed]
    [Google Scholar]
  8. Zhang D, Yang H, Zhang W, Huang Z, Liu SJ. Rhodocista pekingensis sp. nov., a cyst-forming phototrophic bacterium from a municipal wastewater treatment plant. Int J Syst Evol Microbiol 2003; 53:1111–1114 [View Article][PubMed]
    [Google Scholar]
  9. Tarrand JJ, Krieg NR, Döbereiner J. A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 1978; 24:967–980 [View Article][PubMed]
    [Google Scholar]
  10. Tindall BJ. Rhodocista centenaria vs Rhodospirillum centenum: a reply to gest and favinger. Int J Syst Evol Microbiol 2001; 51:711–713 [View Article][PubMed]
    [Google Scholar]
  11. Sly LI, Stackebrandt E. Description of Skermanella parooensis gen. nov., sp. nov. to accommodate Conglomeromonas largomobilis subsp. parooensis following the transfer of Conglomeromonas largomobilis subsp. largomobilis to the genus Azospirillum . Int J Syst Bacteriol 1999; 49:541–544 [View Article]
    [Google Scholar]
  12. Skerman VBD, Sly LI, Williamson ML. Conglomeromonas largomobilis gen. nov., sp. nov., a sodium-sensitive, mixed-flagellated organism from fresh waters. Int J Syst Bacteriol 1983; 33:300–308 [View Article]
    [Google Scholar]
  13. Hiraishi A, Shi J-Liang, Kitamura H, Kobayashi M. Purple nonsulfur bacteria and other microorganisms in photosynthetic sludge reactors for the purification of soybean curd wastewater. JPN J Water Treatment Bio 1983; 19:1–8 [View Article]
    [Google Scholar]
  14. Morohoshi T, Ogata K, Okura T, Sato S. Molecular characterization of the bacterial community in biofilms for degradation of poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate) films in seawater. Microbes Environ 2018; 33:19–25 [View Article][PubMed]
    [Google Scholar]
  15. Du H, Jiao N, Hu Y, Zeng Y. Diversity and distribution of pigmented heterotrophic bacteria in marine environments. FEMS Microbiol Ecol 2006; 57:92–105 [View Article][PubMed]
    [Google Scholar]
  16. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  17. Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 1985; 49:1–7[PubMed]
    [Google Scholar]
  18. Claus D. A standardized Gram staining procedure. World J Microbiol Biotechnol 1992; 8:451–452 [View Article][PubMed]
    [Google Scholar]
  19. Zhang WY, Huo YY, Zhang XQ, Zhu XF, Wu M. Halolamina salifodinae sp. nov. and Halolamina salina sp. nov., two extremely halophilic archaea isolated from a salt mine. Int J Syst Evol Microbiol 2013; 63:4380–4385 [View Article][PubMed]
    [Google Scholar]
  20. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. Methods for General and Molecular Microbiology, 3rd ed. pp. 330–393
    [Google Scholar]
  21. Tindall BJ. Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 1990; 66:199–202 [View Article]
    [Google Scholar]
  22. Tindall BJ. A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 1990; 13:128–130 [View Article]
    [Google Scholar]
  23. Miller LT. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 1982; 16:584–586[PubMed]
    [Google Scholar]
  24. Chun J, Lee JH, Jung Y, Kim M, Kim S et al. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 2007; 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  25. Marmur J. A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 1961; 3:208–IN1 [View Article]
    [Google Scholar]
  26. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  27. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  28. Markowitz VM, Chen IMA, Palaniappan K, Chu K et al. IMG 4 version of the integrated microbial genomes comparative analysis system. Nucleic Acids Res 2004
    [Google Scholar]
  29. Pati A, Ivanova NN, Mikhailova N, Ovchinnikova G, Hooper SD et al. GenePRIMP: a gene prediction improvement pipeline for prokaryotic genomes. Nat Methods 2010; 7:455–457 [View Article][PubMed]
    [Google Scholar]
  30. Ebenhöh O, Handorf T, Heinrich R. Structural analysis of expanding metabolic networks. Genome Inform 2004; 15:35–45[PubMed]
    [Google Scholar]
  31. Opatovsky I, Santos-Garcia D, Ruan Z, Lahav T, Ofaim S et al. Modeling trophic dependencies and exchanges among insects' bacterial symbionts in a host-simulated environment. BMC Genomics 2018; 19:402 [View Article][PubMed]
    [Google Scholar]
  32. Team RDC. R: a language and environment for statistical computing. R foundation for statistical computing. Computing 2010; 14:12–21
    [Google Scholar]
  33. Lin SY, Liu YC, Hameed A, Hsu YH, Lai WA et al. Azospirillum fermentarium sp. nov., a nitrogen-fixing species isolated from a fermenter. Int J Syst Evol Microbiol 2013; 63:3762–3768 [View Article][PubMed]
    [Google Scholar]
  34. Chen RW, Wang KX, Zhou XF, Long C, Tian XP et al. Indioceanicola profundi gen. nov., sp. nov., isolated from Indian Ocean sediment. Int J Syst Evol Microbiol 2018; 68:3707–3712 [View Article][PubMed]
    [Google Scholar]
  35. Kuykendall LD, Roy MA, O'Neill JJ, Devine TE. Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 1988; 38:358–361 [View Article]
    [Google Scholar]
  36. Matturro B, Cruz Viggi C, Aulenta F, Rossetti S. Cable bacteria and the bioelectrochemical snorkel: the natural and engineered facets playing a role in hydrocarbons degradation in marine sediments. Front Microbiol 2017; 8:952 [View Article][PubMed]
    [Google Scholar]
  37. Martínez-Lavanchy PM, Chen Z, Lünsmann V, Marin-Cevada V, Vilchez-Vargas R et al. Microbial toluene removal in hypoxic model constructed wetlands occurs predominantly via the ring monooxygenation pathway. Appl Environ Microbiol 2015; 81:6241–6252 [View Article][PubMed]
    [Google Scholar]
  38. Baldani VLD, Hartmann A, Döbereiner J, Baldani JI, Krieg NR et al. Azospirillum . Bergey’s Manual of Systematics of Archaea and Bacteria 2015 pp. 1–35
    [Google Scholar]
  39. Becking JH. Azospirillum Lipoferum –, A Reappraisal. 2011 pp. 130–149
    [Google Scholar]
  40. Givaudan A, Bally R. Similarities between large plasmids of Azospirillum lipoferum . FEMS Microbiol Lett 1991; 78:245–252 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003428
Loading
/content/journal/ijsem/10.1099/ijsem.0.003428
Loading

Data & Media loading...

Supplements

Supplementary data

PDF

Most cited Most Cited RSS feed