1887

Abstract

A novel slowly growing member of the genus , designated 1PNM-20, was isolated from an abandoned lead–zinc mine in Meizhou, Guangdong Province, PR China. A polyphasic taxonomic study was performed to characterize the novel strain. Growth occurred on Reasoner’s 2A (R2A) agar and peptone–yeast extract (PYE) agar, but not in liquid R2A or PYE media. Cells were Gram-stain-negative, aerobic, non-spore-forming, rod-shaped and motile with a polar flagellum (monotrichous). 16S rRNA gene sequence comparison showed that it shared the highest similarity with PR0302 (97.2 %), followed by 9NM-10 (97.0 %), FQM01 (97.0 %) and other species of (<97 %). Phylogenetic analyses clearly showed that strain 1PNM-20 fell into the cluster of , and was most closely related to . The draft genome sequence was 3.76 Mb in length with a DNA G+C content of 69.8 mol%. Major fatty acids were summed feature 8 (C 7 and/or C 6), summed feature 3 (C 7 and/or C 6), C and 11-methyl C 7, with C 2-OH as the main hydroxy fatty acid. Ubiquinone 10 (Q-10) was the predominant respiratory quinone, and -homospermidine was displayed as the major polyamine. The polar lipids were composed of sphingoglycolipid, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, an unidentified phospholipid and an unidentified glycolipid. The phenotypic, phylogenetic and chemotaxonomic results supported the hypothesis that strain 1PNM-20 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 1PNM-20 (=GDMCC 1.660=DSM 27572).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003427
2019-08-01
2019-09-20
Loading full text...

Full text loading...

References

  1. Yabuuchi E, Yano I, Oyaizu H, Hashimoto Y, Ezaki T et al. Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas. Microbiol Immunol 1990;34:99–119 [CrossRef][PubMed]
    [Google Scholar]
  2. Yabuuchi E, Kosako Y, Naka T, Suzuki S, Yano I. Proposal of Sphingomonas suberifaciens (van Bruggen, Jochimsen and Brown 1990) comb. nov., Sphingomonas natatoria (Sly 1985) comb. nov., Sphingomonas ursincola (Yurkov et al. 1997) comb. nov., and emendation of the genus Sphingomonas. Microbiol Immunol 1999;43:339–349 [CrossRef][PubMed]
    [Google Scholar]
  3. Takeuchi M, Hamana K, Hiraishi A. Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 2001;51:1405–1417 [CrossRef][PubMed]
    [Google Scholar]
  4. Yabuuchi E, Kosako Y, Fujiwara N, Naka T, Matsunaga I et al. Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. Int J Syst Evol Microbiol 2002;52:1485–1496 [CrossRef][PubMed]
    [Google Scholar]
  5. Busse HJ, Denner EB, Buczolits S, Salkinoja-Salonen M, Bennasar A et al. Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas. Int J Syst Evol Microbiol 2003;53:1253–1260 [CrossRef][PubMed]
    [Google Scholar]
  6. Chen H, Jogler M, Rohde M, Klenk HP, Busse HJ et al. Reclassification and emended description of Caulobacter leidyi as Sphingomonas leidyi comb. nov., and emendation of the genus Sphingomonas. Int J Syst Evol Microbiol 2012;62:2835–2843 [CrossRef][PubMed]
    [Google Scholar]
  7. Feng GD, Yang SZ, Xiong X, Li HP, Zhu HH. Sphingomonas spermidinifaciens sp. nov., a novel bacterium containing spermidine as the major polyamine, isolated from an abandoned lead-zinc mine and emended descriptions of the genus Sphingomonas and the species Sphingomonas yantingensis and Sphingomonas japonica. Int J Syst Evol Microbiol 2017;67:2160–2165 [CrossRef][PubMed]
    [Google Scholar]
  8. Zhou XK, Mi QL, Yao JH, Wu H, Liu XM et al. Sphingomonas tabacisoli sp. nov., a member of the genus Sphingomonas, isolated from rhizosphere soil of Nicotiana tabacum L. Int J Syst Evol Microbiol 2018;68:2574–2579 [CrossRef][PubMed]
    [Google Scholar]
  9. Yoon JH, Kang SJ, Lee SY, Oh TK, Tk O. Sphingomonas insulae sp. nov., isolated from soil. Int J Syst Evol Microbiol 2008;58:231–236 [CrossRef][PubMed]
    [Google Scholar]
  10. Chen H, Jogler M, Tindall BJ, Klenk HP, Rohde M et al. Sphingomonas starnbergensis sp. nov., isolated from a prealpine freshwater lake. Int J Syst Evol Microbiol 2013;63:1017–1023 [CrossRef][PubMed]
    [Google Scholar]
  11. Roh SW, Kim KH, Nam YD, Chang HW, Kim MS et al. Sphingomonas aestuarii sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 2009;59:1359–1363 [CrossRef][PubMed]
    [Google Scholar]
  12. Feng GD, Yang SZ, Wang YH, Zhao GZ, Deng MR et al. Sphingomonas gimensis sp. nov., a novel Gram-negative bacterium isolated from abandoned lead-zinc ore mine. Antonie van Leeuwenhoek 2014;105:1091–1097 [CrossRef][PubMed]
    [Google Scholar]
  13. Choi GM, Jo JH, Kang MS, Kim MS, Lee SY et al. Sphingomonas aquatica sp. nov., isolated from tap water. Int J Syst Evol Microbiol 2017;67:845–850 [CrossRef][PubMed]
    [Google Scholar]
  14. Xue H, Piao CG, Wang XZ, Lin CL, Guo MW et al. Sphingomonas aeria sp. nov., isolated from air. Int J Syst Evol Microbiol 2018;68:2866–2871 [CrossRef][PubMed]
    [Google Scholar]
  15. Feng GD, Yang SZ, Wang YH, Zhang XX, Zhao GZ et al. Description of a Gram-negative bacterium, Sphingomonas guangdongensis sp. nov. Int J Syst Evol Microbiol 2014;64:1697–1702 [CrossRef][PubMed]
    [Google Scholar]
  16. Feng GD, Yang SZ, Xiong X, Li HP, Zhu HH. Sphingomonas metalli sp. nov., isolated from an abandoned lead-zinc mine. Int J Syst Evol Microbiol 2016;66:2046–2051 [CrossRef][PubMed]
    [Google Scholar]
  17. Feng GD, Xiong X, Zhu HH, Li HP. Sphingomonas difficilis sp. nov., a difficultly cultivable bacterium that grows on solid but not in liquid medium, isolated from an abandoned lead-zinc mine. Int J Syst Evol Microbiol 2017;67:5273–5278 [CrossRef][PubMed]
    [Google Scholar]
  18. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 1991;173:697–703 [CrossRef][PubMed]
    [Google Scholar]
  19. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  20. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  21. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  22. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  23. Rzhetsky A, Nei M. Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 1993;10:1073–1095 [CrossRef][PubMed]
    [Google Scholar]
  24. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  25. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek 2017;110:1281–1286 [CrossRef][PubMed]
    [Google Scholar]
  26. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  27. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  28. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014;64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  29. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  30. Van der Linde K, Lim BT, Rondeel JM, Antonissen LP, de Jong GM. Improved bacteriological surveillance of haemodialysis fluids: a comparison between Tryptic Soy Agar and Reasoner's 2A media. Nephrol Dial Transplant 1999;14:2433–2437 [CrossRef][PubMed]
    [Google Scholar]
  31. Busse HJ, Hauser E, Kämpfer P. Description of two novel species, Sphingomonas abaci sp. nov. and Sphingomonas panni sp. nov. Int J Syst Evol Microbiol 2005;55:2565–2569 [CrossRef][PubMed]
    [Google Scholar]
  32. Buck JD. Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 1982;44:992–993[PubMed]
    [Google Scholar]
  33. Tindall BJ, Sikorski J, Smibert RA, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Breznak TJ, Marzluf GA, Schmidt TM. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: ASM Press; 2007; pp.330–393
    [Google Scholar]
  34. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  35. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  36. Hiraishi A, Ueda Y, Ishihara J, Mori T. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 1996;42:457–469 [CrossRef]
    [Google Scholar]
  37. Lee H, Kim DU, Lee S, Yun J, Park S et al. Sphingomonas carri sp. nov., isolated from a car air-conditioning system. Int J Syst Evol Microbiol 2017;67:4069–4074 [CrossRef][PubMed]
    [Google Scholar]
  38. Huang J, Huang Z, Zhang ZD, He LY, Sheng XF. Sphingomonas yantingensis sp. nov., a mineral-weathering bacterium isolated from purplish paddy soil. Int J Syst Evol Microbiol 2014;64:1030–1034 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003427
Loading
/content/journal/ijsem/10.1099/ijsem.0.003427
Loading

Data & Media loading...

Supplementary data

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error