1887

Abstract

A Gram-stain-positive, aerobic, rod-shaped, endospore-forming bacterium, designated strain M2MS4P-1, was isolated from surface-sterilized bark of Sonneratiaapetala sampled in Guangxi, China. The bacterium was characterized by a polyphasic approach to determine its taxonomic position. 16S rRNA gene sequence comparisons revealed that strain M2MS4P-1 belonged to the genus Cohnella and was most closely to Cohnella luojiensis HY-22R (98.4 % similarity). The average nucleotide identity value and estimated DDH value between strain M2MS4P-1 and the type strain of C. luojiensis HY-22R were 79.2 and 20.1 %, respectively. Neither substrate nor aerial mycelia were formed, and no diffusible pigments were observed on the media tested. Strain M2MS4P-1 grew in the pH range 6.0–9.0 (optimum, pH 7.0–8.0), at temperatures between 10–37 °C (30 °C) and in 0–1 % (w/v) NaCl (0 %). The predominant isoprenoid quinone in strain M2MS4P-1 was menaquinone-7. The major fatty acids were anteiso-C15 : 0 and iso-C16 : 0. The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, lysyl-phosphatidylglycerol, four unidentified aminophospholipids and two unidentified phospholipids. The DNA G+C content was 51.5 mol%. According to the phylogenetic, phenotypic and chemotaxonomic evidence, strain M2MS4P-1 was clearly distinguishable from other species with validly published names in the genus Cohnella and should therefore be classified as a novel species, for which we suggest the name Cohnella endophytica sp. nov. The type strain is M2MS4P-1 (=KCTC 43011=CGMCC 1.13745).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003417
2019-05-07
2019-08-25
Loading full text...

Full text loading...

References

  1. Kämpfer P, Rosselló-Mora R, Falsen E, Busse HJ, Tindall BJ. Cohnella thermotolerans gen. nov., sp. nov., and classification of 'Paenibacillus hongkongensis' as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol 2006;56:781–786 [CrossRef][PubMed]
    [Google Scholar]
  2. García-Fraile P, Velázquez E, Mateos PF, Martínez-Molina E, Rivas R. Cohnella phaseoli sp. nov., isolated from root nodules of Phaseolus coccineus in Spain, and emended description of the genus Cohnella. Int J Syst Evol Microbiol 2008;58:1855–1859 [CrossRef][PubMed]
    [Google Scholar]
  3. Cho EA, Lee JS, Lee KC, Jung HC, Pan JG et al. Cohnella laeviribosi sp. nov., isolated from a volcanic pond. Int J Syst Evol Microbiol 2007;57:2902–2907 [CrossRef][PubMed]
    [Google Scholar]
  4. Flores-Félix JD, Carro L, Ramírez-Bahena MH, Tejedor C, Igual JM et al. Cohnella lupini sp. nov., an endophytic bacterium isolated from root nodules of Lupinus albus. Int J Syst Evol Microbiol 2014;64:83–87 [CrossRef][PubMed]
    [Google Scholar]
  5. Huang Z, Yu YJ, Bao YY, Xia L, Sheng XF et al. Cohnella nanjingensis sp. nov., an extracellular polysaccharide-producing bacterium isolated from soil. Int J Syst Evol Microbiol 2014;64:3320–3324 [CrossRef][PubMed]
    [Google Scholar]
  6. Khianngam S, Tanasupawat S, Akaracharanya A, Kim KK, Lee KC et al. Cohnella thailandensis sp. nov., a xylanolytic bacterium from Thai soil. Int J Syst Evol Microbiol 2010;60:2284–2287 [CrossRef][PubMed]
    [Google Scholar]
  7. Shiratori H, Tagami Y, Beppu T, Ueda K. Cohnella fontinalis sp. nov., a xylanolytic bacterium isolated from fresh water. Int J Syst Evol Microbiol 2010;60:1344–1348 [CrossRef][PubMed]
    [Google Scholar]
  8. Khianngam S, Tanasupawat S, Akaracharanya A, Kim KK, Lee KC et al. Cohnella cellulosilytica sp. nov., isolated from buffalo faeces. Int J Syst Evol Microbiol 2012;62:1921–1925 [CrossRef][PubMed]
    [Google Scholar]
  9. Jiang F, Dai J, Wang Y, Xue X, Xu M et al. Cohnella arctica sp. nov., isolated from Arctic tundra soil. Int J Syst Evol Microbiol 2012;62:817–821 [CrossRef][PubMed]
    [Google Scholar]
  10. Kim SJ, Weon HY, Kim YS, Anandham R, Jeon YA et al. Cohnella yongneupensis sp. nov. and Cohnella ginsengisoli sp. nov., isolated from two different soils. Int J Syst Evol Microbiol 2010;60:526–530 [CrossRef][PubMed]
    [Google Scholar]
  11. Lee Y, Jeon CO. Cohnella algarum sp. nov., isolated from a freshwater green alga Paulinella chromatophora. Int J Syst Evol Microbiol 2017;67:4767–4772 [CrossRef][PubMed]
    [Google Scholar]
  12. Kämpfer P, Glaeser SP, Busse HJ. Cohnella lubricantis sp. nov., isolated from a coolant lubricant solution. Int J Syst Evol Microbiol 2017;67:466–471 [CrossRef][PubMed]
    [Google Scholar]
  13. Kudryashova EB, Karlyshev AV, Ariskina EV, Streshinskaya GM, Vinokurova NG et al. Cohnella kolymensis sp. nov., a novel bacillus isolated from Siberian permafrost. Int J Syst Evol Microbiol 2018;68:2912–2917 [CrossRef][PubMed]
    [Google Scholar]
  14. Parte AC. LPSN - list of prokaryotic names with standing in Nomenclature (bacterio.net), 20 years on. Int J Syst Evol Microbiol 2018;68:1825–1829 [CrossRef][PubMed]
    [Google Scholar]
  15. Li F, Gao C, Zhu L, Yu L, Qin M et al. Diversity and cytotoxic activity of endophytic bacteria isolated from Sonneratia apetala of Maowei Sea. Wei Sheng Wu Xue Bao 2016;56:689–697[PubMed]
    [Google Scholar]
  16. Li WJ, Xu P, Schumann P, Zhang YQ, Pukall R et al. Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 2007;57:1424–1428 [CrossRef][PubMed]
    [Google Scholar]
  17. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  18. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  19. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980;16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  20. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–425 [CrossRef][PubMed]
    [Google Scholar]
  21. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  22. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  23. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  24. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  25. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  26. Shirling EB, Gottlieb D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol 1966;16:313–340 [CrossRef]
    [Google Scholar]
  27. Kelly KL. Inter-Society Color Council-National Bureau of Standards Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office; 1964
    [Google Scholar]
  28. Xu P, Li WJ, Tang SK, Zhang YQ, Chen GZ et al. Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family 'Oxalobacteraceae' isolated from China. Int J Syst Evol Microbiol 2005;55:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
  29. Magee CM, Rodeheaver G, Edgerton MT, Edlich RF. A more reliable gram staining technic for diagnosis of surgical infections. Am J Surg 1975;130:341–346 [CrossRef][PubMed]
    [Google Scholar]
  30. Cappuccino JG, Sherman N. Microbiology: A Laboratory Manual, 6th ed. San Francisco: Benjamin Cummings Pearson Education; 2002
    [Google Scholar]
  31. Gonzalez C, Gutierrez C, Ramirez C. Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 1978;24:710–715 [CrossRef][PubMed]
    [Google Scholar]
  32. Rhuland LE, Work E, Denman RF, Hoare DS. The behavior of the isomers of α,ε-diaminopimelic acid on paper chromatograms. J Am Chem Soc 1955;77:4844–4846 [CrossRef]
    [Google Scholar]
  33. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  34. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977;100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  35. Guo L, Tuo L, Habden X, Zhang Y, Liu J et al. Allosalinactinospora lopnorensis gen. nov., sp. nov., a new member of the family Nocardiopsaceae isolated from soil. Int J Syst Evol Microbiol 2015;65:206–213 [CrossRef][PubMed]
    [Google Scholar]
  36. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI inc; 1990
    [Google Scholar]
  37. Tuo L, Yan XR, Li FN, Yang C, An MB et al. Amnibacterium flavum sp. nov., a novel endophytic actinobacterium isolated from bark of Nerium indicum Mill. Int J Syst Evol Microbiol 2019;69:285–290 [CrossRef][PubMed]
    [Google Scholar]
  38. Cai F, Wang Y, Qi H, Dai J, Yu B et al. Cohnella luojiensis sp. nov., isolated from soil of a Euphrates poplar forest. Int J Syst Evol Microbiol 2010;60:1605–1608 [CrossRef][PubMed]
    [Google Scholar]
  39. Choi JH, Seok JH, Jang HJ, Cha JH, Cha CJ et al. Cohnella saccharovorans sp. nov., isolated from ginseng soil. Int J Syst Evol Microbiol 2016;66:1713–1717 [CrossRef][PubMed]
    [Google Scholar]
  40. Lee KC, Kim KK, Kim JS, Kim DS, Ko SH et al. Cohnella collisoli sp. nov., isolated from lava forest soil. Int J Syst Evol Microbiol 2015;65:3125–3130 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003417
Loading
/content/journal/ijsem/10.1099/ijsem.0.003417
Loading

Data & Media loading...

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error