1887

Abstract

A Gram-stain-positive, alkaliphilic, moderately halophilic, cocci-shaped actinobacterium (strain M8) was isolated from a sample of soda lake sediment (Lake Magadi, Tanzania). The isolate was heterotrophic, strictly aerobic, catalase-positive, oxidase-negative and formed orange-pigmented colonies in solid media. It utilized various sugars and organic acids as sole carbon sources. The organism grew at 10–38 °C, at pH 7.5–12.0 and in the presence of 1–12 % (w/v) NaCl, with optimal growth occurring at 30 °C, at pH 10 and in the presence of 5 % (w/v) NaCl. Comparative 16S rRNA gene sequence analysis showed that strain M8 belonged to the genus Nesterenkonia , sharing the closest similarities to Nesterenkoniahalobia DSM 20541, Nesterenkoniahalophila YIM 70179 and Nesterenkoniaaethiopica DSM 17733 (97.5, 97.5 and 97.1 %, respectively). The characteristic diamino acid of strain M8 was found to be lysine and the polar lipids detected were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, two unidentified glycolipids and two unidentified phospholipids. The DNA G+C content was 61.8 mol% (genome). The strain contained MK-7, MK-9 and MK-10 as the respiratory quinones, and the major fatty acids (>10 %) comprised anteiso-C17 : 0 and anteiso-C15 : 0. On the basis of phylogenetic analyses and phenotypic data, strain M8 is considered to represent a novel species, for which the name Nesterenkonia natronophila sp. nov. is proposed. The type strain is M8 (=JCM 32100=CGMCC 1.16706=MCC 3367).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003409
2019-05-02
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/7/1960.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003409&mimeType=html&fmt=ahah

References

  1. Stackebrandt E, Koch C, Gvozdiak O, Schumann P. Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int J Syst Bacteriol 1995; 45:682–692 [View Article][PubMed]
    [Google Scholar]
  2. Stackebrandt EN. Nesterenkonia. In Whitman WB, Rainey F, Kämpfer P, Trujillo M, Chun J et al. (editors) Bergey's Manual of Systematics of Archaea and Bacteria 2015
    [Google Scholar]
  3. Delgado O, Quillaguamán J, Bakhtiar S, Mattiasson B, Gessesse A et al. Nesterenkonia aethiopica sp. nov., an alkaliphilic, moderate halophile isolated from an Ethiopian soda lake. Int J Syst Evol Microbiol 2006; 56:1229–1232 [View Article][PubMed]
    [Google Scholar]
  4. Li WJ, Zhang YQ, Schumann P, Liu HY, Yu LY et al. Nesterenkonia halophila sp. nov., a moderately halophilic, alkalitolerant actinobacterium isolated from a saline soil. Int J Syst Evol Microbiol 2008; 58:1359–1363 [View Article][PubMed]
    [Google Scholar]
  5. Collins MD, Lawson PA, Labrenz M, Tindall BJ, Weiss N et al. Nesterenkonia lacusekhoensis sp. nov., isolated from hypersaline Ekho Lake, East Antarctica, and emended description of the genus Nesterenkonia . Int J Syst Evol Microbiol 2002; 52:1145–1150 [View Article][PubMed]
    [Google Scholar]
  6. Finore I, Orlando P, di Donato P, Leone L, Nicolaus B et al. Nesterenkonia aurantiaca sp. nov., an alkaliphilic actinobacterium isolated from Antarctica. Int J Syst Evol Microbiol 2016; 66:1554–1560 [View Article][PubMed]
    [Google Scholar]
  7. Li WJ, Chen HH, Kim CJ, Zhang YQ, Park DJ et al. Nesterenkonia sandarakina sp. nov. and Nesterenkonia lutea sp. nov., novel actinobacteria, and emended description of the genus Nesterenkonia . Int J Syst Evol Microbiol 2005; 55:463–466 [View Article][PubMed]
    [Google Scholar]
  8. Onishi H, Kamekura M. Micrococcus halobius sp. nov. Int J Syst Bacteriol 1972; 22:233–236 [View Article]
    [Google Scholar]
  9. Govender L, Naidoo L, Setati ME. Nesterenkonia suensis sp. nov., a haloalkaliphilic actinobacterium isolated from a salt pan. Int J Syst Evol Microbiol 2013; 63:41–46 [View Article][PubMed]
    [Google Scholar]
  10. Borsodi AK, Szili-Kovács T, Schumann P, Spröer C, Márialigeti K et al. Nesterenkonia pannonica sp. nov., a novel alkaliphilic and moderately halophilic actinobacterium. Int J Syst Evol Microbiol 2017; 67:4116–4120 [View Article][PubMed]
    [Google Scholar]
  11. Chander AM, Nair RG, Kaur G, Kochhar R, Dhawan DK et al. Genome insight and comparative pathogenomic analysis of Nesterenkonia jeotgali strain CD08_7 isolated from duodenal mucosa of celiac disease patient. Front Microbiol 2017; 8:129 [View Article][PubMed]
    [Google Scholar]
  12. Li L, Li YQ, Fu YS, Zhang H, Alkhalifah DHM et al. Nesterenkonia endophytica sp. nov., isolated from roots of Glycyrrhiza uralensis . Int J Syst Evol Microbiol 2018; 68:2659–2663 [View Article][PubMed]
    [Google Scholar]
  13. Menes RJ, Viera CE, Farías ME, Seufferheld MJ. Halopeptonella vilamensis gen. nov, sp. nov., a halophilic strictly aerobic bacterium of the family Ectothiorhodospiraceae . Extremophiles 2016; 20:19–25 [View Article][PubMed]
    [Google Scholar]
  14. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017; 67:1613–1618 [View Article][PubMed]
    [Google Scholar]
  15. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  16. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  17. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  18. Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  19. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  20. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  21. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012; 19:455–477 [View Article][PubMed]
    [Google Scholar]
  22. Zerbino DR, Birney E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 2008; 18:821–829 [View Article][PubMed]
    [Google Scholar]
  23. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article][PubMed]
    [Google Scholar]
  24. Menes RJ, Viera CE, Farías ME, Seufferheld MJ. Halomonas vilamensis sp. nov., isolated from high-altitude Andean lakes. Int J Syst Evol Microbiol 2011; 61:1211–1217 [View Article][PubMed]
    [Google Scholar]
  25. Barrow GI, Feltham RKA. Cowan and Steel's Manual for Identification of Medical Bacteria Cambridge: Cambridge University Press; 2003
    [Google Scholar]
  26. Smibert RM, Krieg NR. Phenotypic characterization. In Gerhardt P, Murray RGE, Wood WA, Krieg NR. (editors) Methods for General and Molecular Bacteriology Washington, DC: ASM; 1994 pp. 603–711
    [Google Scholar]
  27. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark: Microbial ID, Inc; 1990
    [Google Scholar]
  28. Minnikin DE, Collins MD, Goodfellow M. Fatty acid and polar lipid composition in the classification of cellulomonas, oerskovia and related taxa. J Appl Bacteriol 1979; 47:87–95 [View Article]
    [Google Scholar]
  29. Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 1980; 48:459–470 [View Article]
    [Google Scholar]
  30. Collins MD, Pirouz T, Goodfellow M, Minnikin DE. Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 1977; 100:221–230 [View Article][PubMed]
    [Google Scholar]
  31. Kroppenstedt RM. Separation of bacterial menaquinones by hplc using reverse phase (rp18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  32. Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407–477[PubMed]
    [Google Scholar]
  33. Tang SK, Wang Y, Chen Y, Lou K, Cao LL et al. Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella . Int J Syst Evol Microbiol 2009; 59:2025–2032 [View Article][PubMed]
    [Google Scholar]
  34. Luo HY, Wang YR, Miao LH, Yang PL, Shi PJ et al. Nesterenkonia alba sp. nov., an alkaliphilic actinobacterium isolated from the black liquor treatment system of a cotton pulp mill. Int J Syst Evol Microbiol 2009; 59:863–868 [View Article][PubMed]
    [Google Scholar]
  35. Kim M, Oh HS, Park SC, Chun J. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 2014; 64:346–351 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003409
Loading
/content/journal/ijsem/10.1099/ijsem.0.003409
Loading

Data & Media loading...

Supplements

Supplementary data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error