1887

Abstract

Strain LBB-42 was isolated from sediment sampled at Lake Beloe Bordukovskoe, located in the Moscow region (Russia). Phylogenetic analyses based on 16S rRNA gene sequencing results assigned the strain to the genus Magnetospirillum . Major fatty acids were C16 : 1ω7c, C16 : 0 and C18 : 1 ω9/C18 : 1 ω7. Genome sequencing revealed a genome size of 4.40 Mbp and a G+C content of 63.4 mol%. The average nucleotide identity and digital DNA–DNA hybridization values suggested that strain LBB-42 represents a new species, for which we propose the name Magnetospirillum kuznetsovii sp. nov., with the type strain LBB-42 (=VKM B-3270=KCTC 15749).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003408
2019-04-30
2020-01-21
Loading full text...

Full text loading...

References

  1. Schleifer KH, Schüler D, Spring S, Weizenegger M, Amann R et al. The genus Magnetospirillum gen. nov. description of Magnetospirillum gryphiswaldense sp. nov. and transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum comb. nov. Syst Appl Microbiol 1991;14:379–385 [CrossRef]
    [Google Scholar]
  2. Lefèvre CT, Bazylinski DA. Ecology, diversity and evolution of magnetotactic bacteria. Microbiol Mol Biol Rev 2013;77:497–526 [CrossRef][PubMed]
    [Google Scholar]
  3. Maratea D, Blakemore RP. Aquaspirillum magnetotacticum sp. nov., a magnetic spirillum. Int J Syst Bacteriol 1981;31:452–455 [CrossRef]
    [Google Scholar]
  4. Dziuba M, Koziaeva V, Grouzdev D, Burganskaya E, Baslerov R et al. Magnetospirillum caucaseum sp. nov., Magnetospirillum marisnigri sp. nov. and Magnetospirillum moscoviense sp. nov., freshwater magnetotactic bacteria isolated from three distinct geographical locations in European Russia. Int J Syst Evol Microbiol 2016;66:2069–2077 [CrossRef][PubMed]
    [Google Scholar]
  5. Blakemore RP, Short KA, Bazylinski DA, Rosenblatt C, Frankel RB. Microaerobic conditions are required for magnetite formation within Aquaspirillum magnetotacticum. Geomicrobiol J 1985;4:53–71 [CrossRef]
    [Google Scholar]
  6. Bazylinski DA, Blakemore RP. Denitrification and assimilatory nitrate reduction in Aquaspirillum magnetotacticum. Appl Environ Microbiol 1983;46:1118–1124[PubMed]
    [Google Scholar]
  7. Heyen U, Schüler D. Growth and magnetosome formation by microaerophilic Magnetospirillum strains in an oxygen-controlled fermentor. Appl Microbiol Biotechnol 2003;61:536–544 [CrossRef][PubMed]
    [Google Scholar]
  8. Geelhoed JS, Kleerebezem R, Sorokin DY, Stams AJ, van Loosdrecht MC. Reduced inorganic sulfur oxidation supports autotrophic and mixotrophic growth of Magnetospirillum strain J10 and Magnetospirillum gryphiswaldense. Environ Microbiol 2010;12:1031–1040 [CrossRef][PubMed]
    [Google Scholar]
  9. Gorlenko VM, Dziuba MV, Maleeva AN, Panteleeva AN, Kolganova TV et al. [Magnetospirillum aberrantis sp. nov., a new freshwater bacterium with magnetic inclusions]. Mikrobiologiia 2011;80:692–702 [CrossRef][PubMed]
    [Google Scholar]
  10. Thrash JC, Ahmadi S, Torok T, Coates JD. Magnetospirillum bellicus sp. nov., a novel dissimilatory perchlorate-reducing alphaproteobacterium isolated from a bioelectrical reactor. Appl Environ Microbiol 2010;76:4730–4737 [CrossRef][PubMed]
    [Google Scholar]
  11. Ullrich S, Kube M, Schübbe S, Reinhardt R, Schüler D. A hypervariable 130-kilobase genomic region of Magnetospirillum gryphiswaldense comprises a magnetosome island which undergoes frequent rearrangements during stationary growth. J Bacteriol 2005;187:7176–7184 [CrossRef][PubMed]
    [Google Scholar]
  12. Grünberg K, Wawer C, Tebo BM, Schüler D. A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl Environ Microbiol 2001;67:4573–4582 [CrossRef][PubMed]
    [Google Scholar]
  13. Lefèvre CT, Trubitsyn D, Abreu F, Kolinko S, Jogler C et al. Comparative genomic analysis of magnetotactic bacteria from the Deltaproteobacteria provides new insights into magnetite and greigite magnetosome genes required for magnetotaxis. Environ Microbiol 2013;15:2712–2735 [CrossRef][PubMed]
    [Google Scholar]
  14. Monteil CL, Perrière G, Menguy N, Ginet N, Alonso B et al. Genomic study of a novel magnetotactic Alphaproteobacteria uncovers the multiple ancestry of magnetotaxis. Environ Microbiol 2018;20:4415–4430 [CrossRef][PubMed]
    [Google Scholar]
  15. Uebe R, Schüler D. Magnetosome biogenesis in magnetotactic bacteria. Nat Rev Microbiol 2016;14:621–637 [CrossRef][PubMed]
    [Google Scholar]
  16. Rioux JB, Philippe N, Pereira S, Pignol D, Wu LF et al. A second actin-like MamK protein in Magnetospirillum magneticum AMB-1 encoded outside the genomic magnetosome island. PLoS One 2010;5:e9151 [CrossRef][PubMed]
    [Google Scholar]
  17. Mathuriya AS. Magnetotactic bacteria: nanodrivers of the future. Crit Rev Biotechnol 2015;8551:0–15
    [Google Scholar]
  18. Wolfe RS, Thauer RK, Pfennig N. A "capillary racetrack" method for isolation of magnetotactic bacteria. FEMS Microbiol Lett 1987;45:31–35 [CrossRef]
    [Google Scholar]
  19. Bryantseva I, Gorlenko VM, Kompantseva EI, Imhoff JF, Süling J et al. Thiorhodospira sibirica gen. nov., sp. nov., a new alkaliphilic purple sulfur bacterium from a Siberian soda lake. Int J Syst Bacteriol 1999;49:697–703 [CrossRef][PubMed]
    [Google Scholar]
  20. Komeili A, Vali H, Beveridge TJ, Newman DK. Magnetosome vesicles are present before magnetite formation, and MamA is required for their activation. Proc Natl Acad Sci USA 2004;101:3839–3844 [CrossRef][PubMed]
    [Google Scholar]
  21. Wilson K. Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol 2001;Chapter 2:2.4.1–2.4.2 [CrossRef][PubMed]
    [Google Scholar]
  22. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 2012;19:455–477 [CrossRef][PubMed]
    [Google Scholar]
  23. Tatusova T, Dicuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016;44:6614–6624 [CrossRef][PubMed]
    [Google Scholar]
  24. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells and metagenomes. Genome Res 2015;25:1043–1055 [CrossRef][PubMed]
    [Google Scholar]
  25. Koziaeva VV, Dziuba MV, Ivanov TM, Kuznetsov BB, Skryabin KG et al. Draft genome sequences of two magnetotactic bacteria, Magnetospirillum moscoviense BB-1 and Magnetospirillum marisnigri SP-1. Genome Announc 2016;4:e0081400816 [CrossRef][PubMed]
    [Google Scholar]
  26. Grouzdev DS, Dziuba MV, Sukhacheva MS, Mardanov AV, Beletskiy AV et al. Draft genome sequence of Magnetospirillum sp. strain SO-1, a freshwater magnetotactic bacterium isolated from the Ol'khovka river, Russia. Genome Announc 2014;2:e0023514 [CrossRef][PubMed]
    [Google Scholar]
  27. Matsunaga T, Okamura Y, Fukuda Y, Wahyudi AT, Murase Y et al. Complete genome sequence of the facultative anaerobic magnetotactic bacterium Magnetospirillum sp. strain AMB-1. DNA Res 2005;12:157–166 [CrossRef][PubMed]
    [Google Scholar]
  28. Smalley MD, Marinov GK, Bertani LE, Desalvo G. Genome sequence of Magnetospirillum magnetotacticum strain MS-1. Genome Announc 2015;3:e0023315 [CrossRef][PubMed]
    [Google Scholar]
  29. Uebe R, Schüler D, Jogler C, Wiegand S. Reevaluation of the complete genome sequence of Magnetospirillum gryphiswaldense MSR-1 with single-molecule real-time sequencing data. Genome Announc 2018;6:e00309-18 [CrossRef][PubMed]
    [Google Scholar]
  30. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  31. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  32. Araujo ACV, Morillo V, Cypriano J, Teixeira L, Leão P et al. Combined genomic and structural analyses of a cultured magnetotactic bacterium reveals its niche adaptation to a dynamic environment. BMC Genomics 2016;17:363–375
    [Google Scholar]
  33. Ji B, Zhang SD, Arnoux P, Rouy Z, Alberto F et al. Comparative genomic analysis provides insights into the evolution and niche adaptation of marine Magnetospira sp. QH-2 strain. Environ Microbiol 2014;16:525–544 [CrossRef][PubMed]
    [Google Scholar]
  34. Jogler C, Kube M, Schübbe S, Ullrich S, Teeling H et al. Comparative analysis of magnetosome gene clusters in magnetotactic bacteria provides further evidence for horizontal gene transfer. Environ Microbiol 2009;11:1267–1277 [CrossRef][PubMed]
    [Google Scholar]
  35. Schübbe S, Williams TJ, Xie G, Kiss HE, Brettin TS et al. Complete genome sequence of the chemolithoautotrophic marine magnetotactic coccus strain MC-1. Appl Environ Microbiol 2009;75:4835–4852 [CrossRef][PubMed]
    [Google Scholar]
  36. Fukuda Y, Okamura Y, Takeyama H, Matsunaga T. Dynamic analysis of a genomic island in Magnetospirillum sp. strain AMB-1 reveals how magnetosome synthesis developed. FEBS Lett 2006;580:801–812 [CrossRef][PubMed]
    [Google Scholar]
  37. Rong C, Zhang C, Zhang Y, Qi L, Yang J et al. FeoB2 functions in magnetosome formation and oxidative stress protection in Magnetospirillum gryphiswaldense strain MSR-1. J Bacteriol 2012;194:3972–3976 [CrossRef][PubMed]
    [Google Scholar]
  38. Rong C, Huang Y, Zhang W, Jiang W, Li Y et al. Ferrous iron transport protein B gene (feoB1) plays an accessory role in magnetosome formation in Magnetospirillum gryphiswaldense strain MSR-1. Res Microbiol 2008;159:530–536 [CrossRef][PubMed]
    [Google Scholar]
  39. Blakemore RP, Maratea D, Wolfe RS. Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium. J Bacteriol 1979;140:720–729[PubMed]
    [Google Scholar]
  40. Matsunaga T, Sakaguchi T, Tadakoro F. Magnetite formation by a magnetic bacterium capable of growing aerobically. Appl Microbiol Biotechnol 1991;35:651–655 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003408
Loading
/content/journal/ijsem/10.1099/ijsem.0.003408
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error