1887

Abstract

A Gram-stain-negative oval-rod-shaped, spore-forming anaerobic bacterium, designated as strain MCWD5, was isolated from sediment of a salt pond in the Republic of Korea (35° 7′ 18″ N 126° 19′ 4″ E). The 16S rRNA gene sequence analysis revealed that strain MCWD5 had low similarity values to members in the family Lachnospiraceae , such as Robinsoniella peoriensis PPC31 (94.8 %), Ruminococcus gauvreauii CCRI-16110 (94.2 %) and Lachnotalea glycerini DLD10 (94.0 %), and its phylogenetic position is unstable. The strain could grow at 20–42 °C (optimum, 38–42 °C), pH 5.5–10.0 (pH 7.0) and with 0–6 % (2.0 %) NaCl. Strain MCWD5 could not use nitrate, nitrite, sulfate or sulfite as electron acceptors. The strain could utilize various carbohydrates, such as arabinose, cellobiose, glucose, etc., and polymers such as pectin and starch. The major fatty acids of strain MCWD5 were C14 : 0, C16 : 0, C16 : 1 ω7c, C18 : 1 ω7c DMA and summed feature 8 (C17 : 1 ω8c and/or C17 : 2), which was clearly different from those of related genera. The major polar lipids were diphosphatidyglycerol, phosphatidyglycerol and an unknown phospholipid. Based on the results of phylogenetic, physiologic and chemotaxonomic studies, Anaerosacchariphilus polymeriproducens gen. nov., sp. nov. with the type strain MCWD5 (=KCTC 15595=DSM 105757) is proposed in the family Lachnospiraceae .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003404
2019-04-30
2019-10-16
Loading full text...

Full text loading...

References

  1. Rainey FA. Order I. Clostridiales Prévot 1953. In De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 3 New York: Springer; 2009; pp.736
    [Google Scholar]
  2. Meehan CJ, Beiko RG. A phylogenomic view of ecological specialization in the Lachnospiraceae, a family of digestive tract-associated bacteria. Genome Biol Evol 2014;6:703–713 [CrossRef][PubMed]
    [Google Scholar]
  3. Rainey FA., Family V. . Lachnospiraceae fam. nov. In De Vos P, Garrity GM, Jones D, Krieg NR, Schleifer K-H et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 3 New York: Springer; 2009; pp.921
    [Google Scholar]
  4. Schouw A, Leiknes Eide T, Stokke R, Birger Pedersen R, Helene Steen I et al. Abyssivirga alkaniphila gen. nov., sp. nov., an alkane-degrading, anaerobic bacterium from a deep-sea hydrothermal vent system, and emended descriptions of Natranaerovirga pectinivora and Natranaerovirga hydrolytica. Int J Syst Evol Microbiol 2016;66:1724–1734 [CrossRef][PubMed]
    [Google Scholar]
  5. Patil Y, Junghare M, Pester M, Müller N, Schink B. Anaerobium acetethylicum gen. nov., sp. nov., a strictly anaerobic, gluconate-fermenting bacterium isolated from a methanogenic bioreactor. Int J Syst Evol Microbiol 2015;65:3289–3296 [CrossRef][PubMed]
    [Google Scholar]
  6. Ueki A, Ohtaki Y, Kaku N, Ueki K. Descriptions of Anaerotaenia torta gen. nov., sp. nov. and Anaerocolumna cellulosilytica gen. nov., sp. nov. isolated from a methanogenic reactor of cattle waste and reclassification of Clostridium aminovalericum, Clostridium jejuense and Clostridium xylanovorans as Anaerocolumna species. Int J Syst Evol Microbiol 2016;66:2936–2943 [CrossRef][PubMed]
    [Google Scholar]
  7. Jeong H, Lim YW, Yi H, Sekiguchi Y, Kamagata Y et al. Anaerosporobacter mobilis gen. nov., sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2007;57:1784–1787 [CrossRef][PubMed]
    [Google Scholar]
  8. Ueki A, Goto K, Ohtaki Y, Kaku N, Ueki K. Description of Anaerotignum aminivorans gen. nov., sp. nov., a strictly anaerobic, amino-acid-decomposing bacterium isolated from a methanogenic reactor, and reclassification of Clostridium propionicum, Clostridium neopropionicum and Clostridium lactatifermentans as species of the genus Anaerotignum. Int J Syst Evol Microbiol 2017;67:4146–4153 [CrossRef][PubMed]
    [Google Scholar]
  9. Koeck DE, Ludwig W, Wanner G, Zverlov VV, Liebl W et al. Herbinix hemicellulosilytica gen. nov., sp. nov., a thermophilic cellulose-degrading bacterium isolated from a thermophilic biogas reactor. Int J Syst Evol Microbiol 2015;65:2365–2371 [CrossRef][PubMed]
    [Google Scholar]
  10. Jarzembowska M, Sousa DZ, Beyer F, Zwijnenburg A, Plugge CM et al. Lachnotalea glycerini gen. nov., sp. nov., an anaerobe isolated from a nanofiltration unit treating anoxic groundwater. Int J Syst Evol Microbiol 2016;66:774–779 [CrossRef][PubMed]
    [Google Scholar]
  11. Mbengue M, Thioye A, Labat M, Casalot L, Joseph M et al. Mobilisporobacter senegalensis gen. nov., sp. nov., an anaerobic bacterium isolated from tropical shea cake. Int J Syst Evol Microbiol 2016;66:1383–1388 [CrossRef][PubMed]
    [Google Scholar]
  12. Podosokorskaya OA, Bonch-Osmolovskaya EA, Beskorovaynyy AV, Toshchakov SV, Kolganova TV et al. Mobilitalea sibirica gen. nov., sp. nov., a halotolerant polysaccharide-degrading bacterium. Int J Syst Evol Microbiol 2014;64:2657–2661 [CrossRef][PubMed]
    [Google Scholar]
  13. Lomans BP, Leijdekkers P, Wesselink JJ, Bakkes P, Pol A et al. Obligate sulfide-dependent degradation of methoxylated aromatic compounds and formation of methanethiol and dimethyl sulfide by a freshwater sediment isolate, Parasporobacterium paucivorans gen. nov., sp. nov. Appl Environ Microbiol 2001;67:4017–4023 [CrossRef][PubMed]
    [Google Scholar]
  14. Mechichi T, Labat M, Garcia JL, Thomas P, Patel BK. Sporobacterium olearium gen. nov., sp. nov., a new methanethiol-producing bacterium that degrades aromatic compounds, isolated from an olive mill wastewater treatment digester. Int J Syst Bacteriol 1999;49 Pt 4:1741–1748 [CrossRef][PubMed]
    [Google Scholar]
  15. Cotta MA, Whitehead TR, Falsen E, Moore E, Lawson PA. Robinsoniella peoriensis gen. nov., sp. nov., isolated from a swine-manure storage pit and a human clinical source. Int J Syst Evol Microbiol 2009;59:150–155 [CrossRef][PubMed]
    [Google Scholar]
  16. Kim W, Lee JH, Kwon KK. Abyssisolibacter fermentans gen. nov. sp. nov., isolated from deep sub-seafloor sediment. J Microbiol 2016;54:347–352 [CrossRef][PubMed]
    [Google Scholar]
  17. Hungate RE. Chapter IV. A roll tube method for cultivation of strict anaerobes. Method Microbiol Part B 1969;3:117–132
    [Google Scholar]
  18. Giovannoni SJ. The polymerase chain reaction. In Stackebrandt E, Goodfellow M. (editors) Nucleic Acid Techniques in Bacterial Systematics Chichester: John Wiley and Sons Ltd; 1991; pp.177–203
    [Google Scholar]
  19. Lee J-W, Kwon KK, Azizi A, Oh H-M, Kim W et al. Microbial community structures of methane hydrate-bearing sediments in the Ulleung Basin, East Sea of Korea. Mar Pet Geol 2013;47:136–146 [CrossRef]
    [Google Scholar]
  20. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012;62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  21. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 2017;67:1613–1617 [CrossRef][PubMed]
    [Google Scholar]
  22. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011;28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  23. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987;4:406–625 [CrossRef][PubMed]
    [Google Scholar]
  24. Jukes TH, Cantor CR. Evolution of protein molecules. In Munro HN. (editor) Mammalian Protein Metabolismvol. 3 New York: Academic Press; 1969; pp.21–132
    [Google Scholar]
  25. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981;17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  26. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971;20:406–416 [CrossRef]
    [Google Scholar]
  27. Tatusova T, Dicuccio M, Badretdin A, Chetvernin V, Nawrocki EP et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 2016;44:6614–6624 [CrossRef][PubMed]
    [Google Scholar]
  28. Na SI, Kim YO, Yoon SH, Ha SM, Baek I et al. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 2018;56:280–285 [CrossRef][PubMed]
    [Google Scholar]
  29. Ben Hania W, Joseph M, Schumann P, Bunk B, Fiebig A et al. Complete genome sequence and description of Salinispira pacifica gen. nov., sp. nov., a novel spirochaete isolated form a hypersaline microbial mat. Stand Genomic Sci 2015;10:7 [CrossRef][PubMed]
    [Google Scholar]
  30. Yang SH, Seo HS, Oh HM, Kim SJ, Lee JH et al. Brumimicrobium mesophilum sp. nov., isolated from a tidal flat sediment, and emended descriptions of the genus Brumimicrobium and Brumimicrobium glaciale. Int J Syst Evol Microbiol 2013;63:1105–1110 [CrossRef][PubMed]
    [Google Scholar]
  31. Liebgott PP, Joseph M, Fardeau ML, Cayol JL, Falsen E et al. Clostridiisalibacter paucivorans gen. nov., sp. nov., a novel moderately halophilic bacterium isolated from olive mill wastewater. Int J Syst Evol Microbiol 2008;58:61–67 [CrossRef][PubMed]
    [Google Scholar]
  32. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  33. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984;2:233–241 [CrossRef]
    [Google Scholar]
  34. Komagata K, Suzuki K. Lipids and cell-wall analysis in bacterial systematics. Method Microbiol 1987;19:161–207
    [Google Scholar]
  35. Domingo MC, Huletsky A, Boissinot M, Bernard KA, Picard FJ et al. Ruminococcus gauvreauii sp. nov., a glycopeptide-resistant species isolated from a human faecal specimen. Int J Syst Evol Microbiol 2008;58:1393–1397 [CrossRef][PubMed]
    [Google Scholar]
  36. Watanabe M, Kaku N, Ueki K, Ueki A. Falcatimonas natans gen. nov., sp. nov., a strictly anaerobic, amino-acid-decomposing bacterium isolated from a methanogenic reactor of cattle waste. Int J Syst Evol Microbiol 2016;66:4639–4644 [CrossRef][PubMed]
    [Google Scholar]
  37. Sakamoto M, Iino T, Ohkuma M. Faecalimonas umbilicata gen. nov., sp. nov., isolated from human faeces, and reclassification of Eubacterium contortum, Eubacterium fissicatena and Clostridium oroticum as Faecalicatena contorta gen. nov., comb. nov., Faecalicatena fissicatena comb. nov. and Faecalicatena orotica comb. nov. Int J Syst Evol Microbiol 2017;67:1219–1227 [CrossRef][PubMed]
    [Google Scholar]
  38. Seo B, Yoo JE, Lee YM, Ko G. Merdimonas faecis gen. nov., sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 2017;67:2430–2435 [CrossRef][PubMed]
    [Google Scholar]
  39. Rainey FA, Hollen BJ, Small A. Genus I. Clostridium prazmowski 1880, 23. In De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed.vol. 3 New York: Springer; 2009; pp.738–828
    [Google Scholar]
  40. Whitehead TR, Cotta MA, Collins MD, Lawson PA. Hespellia stercorisuis gen. nov., sp. nov. and Hespellia porcina sp. nov., isolated from swine manure storage pits. Int J Syst Evol Microbiol 2004;54:241–245 [CrossRef][PubMed]
    [Google Scholar]
  41. Schaal KP. Identification of clinically significant Actinomycetes and related bacteria using chemical techniques. In Goodfellow M, Minnikin DE. (editors) Chemicl Methods in Baterial Systematics London: Academic Press; 1985; pp.359–381
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003404
Loading
/content/journal/ijsem/10.1099/ijsem.0.003404
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error