1887

Abstract

A novel bacterial strain, JDX94, was isolated from tundra soil sampled north of the Yellow River station, Arctic. Cells were Gram-stain-negative, non-spore-forming, short rod-shaped and aerobic. The strain displayed growth at 4–37 °C with an optimum at 28 °C, with 0–1.0 % (w/v) NaCl (optimum, 0%) and at pH 6.0–9.0 (optimum, pH 7.0–7.5). Cells contained summed feature 3 (comprising C16 : 1 ω7c and/or C16 : 1 ω6c), iso-C15 : 0 and iso-C17 : 0 3-OH as its major cellular fatty acids and menaquinone-7 as the only respiratory quinone. The polar lipid profile of strain JDX94 consisted of phosphatidylethanolamine, two unidentified aminolipids and four unknown polar lipids. The DNA G+C content was 37.5 mol%. On the basis 16S rRNA gene sequence comparison, strain JDX94 showed the highest sequence similarity (96.7 %) to Pedobacteragri JCM 15120, followed by Pedobacteralluvionis DSM 19624 (96.3 %). Furthermore, the average nucleotide identity and digital DNA–DNA hybridization values between strain JDX94 and related species of the genus Pedobacter were 74.6–79.2 % and 18.9–24.5 %, respectively. Based on the presented results, we propose a novel species for which the name Pedobacter chinensis sp. nov. is suggested, with the type strain JDX94 (=MCCC 1H00335= KCTC 62850).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003403
2019-06-03
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/69/7/1926.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.003403&mimeType=html&fmt=ahah

References

  1. Steyn PL, Segers P, Vancanneyt M, Sandra P, Kersters K et al. Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. proposal of the family Sphingobacteriaceae fam. nov. Int J Syst Bacteriol 1998; 48:165–177 [View Article][PubMed]
    [Google Scholar]
  2. Cui MD, Wang X, Jiang WK, Hu G, Yang ZG et al. Pedobacter agrisoli sp. nov., isolated from farmland soil. Int J Syst Evol Microbiol 2018; 68:886–891 [View Article][PubMed]
    [Google Scholar]
  3. Švec P, Králová S, Busse HJ, Kleinhagauer T, Pantůček R et al. Pedobacter jamesrossensis sp. nov., Pedobacter lithocola sp. nov., Pedobacter mendelii sp. nov. and Pedobacter petrophilus sp. nov., isolated from the Antarctic environment. Int J Syst Evol Microbiol 2017; 67:1499–1507 [View Article][PubMed]
    [Google Scholar]
  4. Chaudhary DK, Lee SD, Kim J. Pedobacter kyonggii sp. nov., a psychrotolerant bacterium isolated from forest soil. Int J Syst Evol Microbiol 2017; 67:5120–5127 [View Article][PubMed]
    [Google Scholar]
  5. Covas C, Caetano T, Cruz A, Santos T, Dias L et al. Pedobacter lusitanus sp. nov., isolated from sludge of a deactivated uranium mine. Int J Syst Evol Microbiol 2017; 67:1339–1348 [View Article][PubMed]
    [Google Scholar]
  6. Yuan K, Cao M, Li J, Wang G. Pedobacter mongoliensis sp. nov., isolated from grassland soil. Int J Syst Evol Microbiol 2018; 68:1112–1117 [View Article][PubMed]
    [Google Scholar]
  7. Švec P, Králová S, Busse HJ, Kleinhagauer T, Kýrová K et al. Pedobacter psychrophilus sp. nov., isolated from fragmentary rock. Int J Syst Evol Microbiol 2017; 67:2538–2543 [View Article][PubMed]
    [Google Scholar]
  8. Zhang B, Liu ZQ, Zheng YG. Pedobacter quisquiliarum sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 2018; 68:438–442 [View Article][PubMed]
    [Google Scholar]
  9. Yang DJ, Hong JK. Pedobacter solisilvae sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 2017; 67:4814–4819 [View Article][PubMed]
    [Google Scholar]
  10. Gao JL, Sun P, Mao XJ, Du YL, Liu BY et al. Pedobacter zeae sp. nov., an endophytic bacterium isolated from maize root. Int J Syst Evol Microbiol 2017; 67:231–236 [View Article][PubMed]
    [Google Scholar]
  11. Margesin R, Genus SS II, Steyn P. In Krieg NR, Ludwig W, Whitman WB, Hedlund BP, Paster BJ et al. (editors) Bergey’s Manual of Systematic Bacteriology, 2nd ed. vol. 4 New York: Springer; 1998 pp. 339–351
    [Google Scholar]
  12. Mu DS, Liang QY, Wang XM, Lu DC, Shi MJ, Ds M, Dc L et al. Metatranscriptomic and comparative genomic insights into resuscitation mechanisms during enrichment culturing. Microbiome 2018; 6:230 [View Article][PubMed]
    [Google Scholar]
  13. Du ZJ, Wang Y, Dunlap C, Rooney AP, Chen GJ. Draconibacterium orientale gen. nov., sp. nov., isolated from two distinct marine environments, and proposal of Draconibacteriaceae fam. nov. Int J Syst Evol Microbiol 2014; 64:1690–1696 [View Article][PubMed]
    [Google Scholar]
  14. Liu QQ, Li XL, Rooney AP, Du ZJ, Chen GJ. Tangfeifania diversioriginum gen. nov., sp. nov., a representative of the family Draconibacteriaceae . Int J Syst Evol Microbiol 2014; 64:3473–3477 [View Article][PubMed]
    [Google Scholar]
  15. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics 2008; 24:713–714 [View Article][PubMed]
    [Google Scholar]
  16. Li R, Zhu H, Ruan J, Qian W, Fang X et al. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010; 20:265–272 [View Article][PubMed]
    [Google Scholar]
  17. Angiuoli SV, Gussman A, Klimke W, Cochrane G, Field D et al. Toward an online repository of Standard Operating Procedures (SOPs) for (meta)genomic annotation. OMICS 2008; 12:137–141 [View Article][PubMed]
    [Google Scholar]
  18. Kanehisa M, Goto S, Kawashima S, Nakaya A. The KEGG databases at GenomeNet. Nucleic Acids Res 2002; 30:42–46 [View Article][PubMed]
    [Google Scholar]
  19. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M et al. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 2012; 62:716–721 [View Article][PubMed]
    [Google Scholar]
  20. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  21. Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4:406–425 [View Article][PubMed]
    [Google Scholar]
  22. Fitch WM. Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 1971; 20:406–416 [View Article]
    [Google Scholar]
  23. Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 1981; 17:368–376 [View Article][PubMed]
    [Google Scholar]
  24. Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870–1874 [View Article][PubMed]
    [Google Scholar]
  25. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 1980; 16:111–120 [View Article][PubMed]
    [Google Scholar]
  26. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985; 39:783–791 [View Article][PubMed]
    [Google Scholar]
  27. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013; 14:60 [View Article][PubMed]
    [Google Scholar]
  28. Auch AF, von Jan M, Klenk HP, Göker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2010; 2:117–134 [View Article][PubMed]
    [Google Scholar]
  29. Lee I, Ouk Kim Y, Park SC, Chun J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol 2016; 66:1100–1103 [View Article][PubMed]
    [Google Scholar]
  30. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007; 57:81–91 [View Article][PubMed]
    [Google Scholar]
  31. Adrio JL, Demain AL. Microbial enzymes: tools for biotechnological processes. Biomolecules 2014; 4:117–139 [View Article][PubMed]
    [Google Scholar]
  32. Fitzpatrick TB, Amrhein N, Kappes B, MacHeroux P, Tews I et al. Two independent routes of de novo vitamin B 6 biosynthesis: not that different after all. Biochem J 2007; 407:1–13 [View Article]
    [Google Scholar]
  33. Reed KE, Cronan JE. Lipoic acid metabolism in Escherichia coli: sequencing and functional characterization of the lipA and lipB genes. J Bacteriol 1993; 175:1325–1336 [View Article][PubMed]
    [Google Scholar]
  34. Romine MF, Rodionov DA, Maezato Y, Osterman AL, Nelson WC. Underlying mechanisms for syntrophic metabolism of essential enzyme cofactors in microbial communities. ISME J 2017; 11:1434–1446 [View Article][PubMed]
    [Google Scholar]
  35. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 2014; 42:D206–D214 [View Article]
    [Google Scholar]
  36. Bowman JP. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 2000; 50:1861–1868 [View Article][PubMed]
    [Google Scholar]
  37. Cowan ST, Steel KJ. Bacterial Characters and Characterization, 2nd ed. Cambridge, UK: Cambridge University Press; 1974
    [Google Scholar]
  38. Dong XZ, Cai MY. Determination of biochemical characteristics. In Dong XZ, Cai MY. (editors) Manual for the Systematic Identification of General Bacteria Beijing: Science Press; 2001 pp. 370–398
    [Google Scholar]
  39. CLSI Performance Standards for Antimicrobial Susceptibility Testing, Twenty-Second Informational Supplement CLSI document M100-S22. Wayne, PA: Clinical and Laboratory Standards Institute; 2012
    [Google Scholar]
  40. Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: MIDI Inc; 1990
    [Google Scholar]
  41. Fang DB, Han JR, Liu Y, Du ZJ. Seonamhaeicola marinus sp. nov., isolated from marine algae. Int J Syst Evol Microbiol 2017; 67:4857–4861 [View Article][PubMed]
    [Google Scholar]
  42. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 1984; 2:233–241 [View Article]
    [Google Scholar]
  43. Tindall BJ, Sikorski J, Smibert RM, Krieg NR. Phenotypic characterization and the principles of comparative systematics. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf G, Schmidt TM et al. (editors) Methods for General and Molecular Microbiology, 3rd ed. Washington, DC: ASM Press; 2007 pp. 330–393
    [Google Scholar]
  44. Kroppenstedt RM. Separation of bacterial menaquinones by hplc using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. J Liq Chromatogr 1982; 5:2359–2367 [View Article]
    [Google Scholar]
  45. Margesin R, Zhang DC. Pedobacter ruber sp. nov., a psychrophilic bacterium isolated from soil. Int J Syst Evol Microbiol 2013; 63:339–344 [View Article][PubMed]
    [Google Scholar]
  46. Hwang CY, Choi DH, Cho BC. Pedobacter roseus sp. nov., isolated from a hypertrophic pond, and emended description of the genus Pedobacter . Int J Syst Evol Microbiol 2006; 56:1831–1836 [View Article][PubMed]
    [Google Scholar]
  47. Roh SW, Quan ZX, Nam YD, Chang HW, Kim KH et al. Pedobacter agri sp. nov., from soil. Int J Syst Evol Microbiol 2008; 58:1640–1643 [View Article][PubMed]
    [Google Scholar]
  48. Gordon NS, Valenzuela A, Adams SM, Ramsey PW, Pollock JL et al. Pedobacter nyackensis sp. nov., Pedobacter alluvionis sp. nov. and Pedobacter borealis sp. nov., isolated from Montana flood-plain sediment and forest soil. Int J Syst Evol Microbiol 2009; 59:1720–1726 [View Article][PubMed]
    [Google Scholar]
  49. da X, Jiang F, Chang X, Ren L, Qiu X et al. Pedobacter ardleyensis sp. nov., isolated from soil in Antarctica. Int J Syst Evol Microbiol 2015; 65:3841–3846 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003403
Loading
/content/journal/ijsem/10.1099/ijsem.0.003403
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error