1887

Abstract

Biological nitrogen fixation performed by diazotrophic bacteria is a vital process for agricultural and environmental sustainability. In recent years, bacterial classification has been based on genomic data, accelerating our understanding about the diversity, and resulting in the description of several new species. In this study, four strains (CNPSo 3140, CNPSo 3235, CNPSo 3236 and CNPSo 3237) trapped by Phaseolus vulgaris and Mimosa pudica from soil samples of the Brazilian Atlantic Forest biome (Mata Atlântica) were submitted to polyphasic analysis to investigate their proper classification within the genus Mesorhizobium . The 16S rRNA gene phylogram showed that the strains present sequences identical to those of Mesorhizobium acaciae and Mesorhizobium plurifarium , not allowing a clear taxonomic classification; however, when using multilocus sequence analysis methodology, the strains were grouped into a well-supported distinct clade, with <94.5 % nucleotide identity with the other species of the genus. The average nucleotide identity of CNPSo 3140 genome showed values below the threshold in relation to the closest species, of 89.75 % with Mesorhizobium plurifarium and of 88.83 % with Mesorhizobium hawassense ; the digital DNA–DNA hybridization values were 39 and 37.70 % with the same species, respectively. Nodulation gene (nodC) phylogeny positioned the strains in an isolated cluster, showing greater similarity to Mesorhizobium shonense. All data obtained in this study support the description of the novel species Mesorhizobium atlanticum sp. nov. The type strain is CNPSo 3140 (=ABIP 206=LMG 30305=U1602), isolated from a nodule of Phaseolus vulgaris.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.003397
2019-04-16
2019-09-20
Loading full text...

Full text loading...

References

  1. Hungria M, Vargas MAT, Suhet AR, Peres JRR. Fixação biológica do nitrogênio em soja. In Araujo RS, Hungria M. (editors) Microrganismos de Importância Agrícola Brasília: Embrapa-Spi; 1994; pp.9–89
    [Google Scholar]
  2. Ormeño-Orrillo E, Hungria M, Martínez-Romero E. Dinitrogen-fixing prokaryotes. In Rosenberg E. (editor) The Prokaryotes – Prokaryotic Physiology and Biochemistry Berlin Heidelberg: Springer-Verlag; 2013; pp.427–451
    [Google Scholar]
  3. de Lajudie P, Willems A, Nick G, Moreira F, Molouba F et al. Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. Int J Syst Bacteriol 1998;48:369–382 [CrossRef][PubMed]
    [Google Scholar]
  4. Wang ET, van Berkum P, Sui XH, Beyene D, Chen WX et al. Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. Int J Syst Bacteriol 1999;49:51–65 [CrossRef][PubMed]
    [Google Scholar]
  5. Wang ET, Kan FL, Tan ZY, Toledo I, Chen WX et al. Diverse Mesorhizobium plurifarium populations native to Mexican soils. Arch Microbiol 2003;180:444–454 [CrossRef][PubMed]
    [Google Scholar]
  6. Guan SH, Chen WF, Wang ET, Lu YL, Yan XR et al. Mesorhizobium caraganae sp. nov., a novel rhizobial species nodulated with Caragana spp. in China. Int J Syst Evol Microbiol 2008;58:2646–2653 [CrossRef][PubMed]
    [Google Scholar]
  7. Nandasena KG, O'Hara GW, Tiwari RP, Willems A, Howieson JG. Mesorhizobium australicum sp. nov. and Mesorhizobium opportunistum sp. nov., isolated from Biserrula pelecinus L. in Australia. Int J Syst Evol Microbiol 2009;59:2140–2147 [CrossRef][PubMed]
    [Google Scholar]
  8. Zhou PF, Chen WM, Wei GH. Mesorhizobium robiniae sp. nov., isolated from root nodules of Robinia pseudoacacia. Int J Syst Evol Microbiol 2010;60:2552–2556 [CrossRef][PubMed]
    [Google Scholar]
  9. Chen WM, Zhu WF, Bontemps C, Young JP, Wei GH. Mesorhizobium camelthorni sp. nov., isolated from Alhagi sparsifolia. Int J Syst Evol Microbiol 2011;61:574–579 [CrossRef][PubMed]
    [Google Scholar]
  10. Zheng WT, Li Y, Wang R, Sui XH, Zhang XX et al. Mesorhizobium qingshengii sp. nov., isolated from effective nodules of Astragalus sinicus. Int J Syst Evol Microbiol 2013;63:2002–2007 [CrossRef][PubMed]
    [Google Scholar]
  11. de Meyer SE, Tan HW, Andrews M, Heenan PB, Willems A. Mesorhizobium calcicola sp. nov., Mesorhizobium waitakense sp. nov., Mesorhizobium sophorae sp. nov., Mesorhizobium newzealandense sp. nov. and Mesorhizobium kowhaii sp. nov. isolated from Sophora root nodules. Int J Syst Evol Microbiol 2016;66:786–795 [CrossRef][PubMed]
    [Google Scholar]
  12. dall’agnol RF, Bournaud C, Farias SM, Béna G, Moulin L et al. Genetic diversity of symbiotic Paraburkholderia species isolated from nodules of Mimosa pudica (L.) and Phaseolus vulgaris (L.) grown in soils of the Brazilian Atlantic Forest (Mata Atlântica). FEMS Microbiol Ecol 2017;93:1–15
    [Google Scholar]
  13. Bomfeti CA, Florentino LA, Guimarães AP, Cardoso PG, Guerreiro MC et al. Exopolysaccharides produced by the symbiotic nitrogen-fixing bacteria of leguminosae. R Bras C Solo 2011;35:657–671 [CrossRef]
    [Google Scholar]
  14. Laranjo M, Oliveira S. Tolerance of Mesorhizobium type strains to different environmental stresses. Antonie van Leeuwenhoek 2011;99:651–662 [CrossRef][PubMed]
    [Google Scholar]
  15. Hungria M, O’Hara GW, Zilli JE, Araujo RS, Deaker R et al. Isolation and growth of rhizobia. In Howieson JG, Dilworth MJ. (editors) Working with Rhizobia Canberra, Australia: ACIAR; 2016; pp.39–60
    [Google Scholar]
  16. Delamuta JR, Ribeiro RA, Ormeño-Orrillo E, Melo IS, Martínez-Romero E et al. Polyphasic evidence supporting the reclassification of Bradyrhizobium japonicum group Ia strains as Bradyrhizobium diazoefficiens sp. nov. Int J Syst Evol Microbiol 2013;63:3342–3351 [CrossRef][PubMed]
    [Google Scholar]
  17. Kumar S, Stecher G, Tamura K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016;33:1870–1874 [CrossRef][PubMed]
    [Google Scholar]
  18. Tamura K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol Biol Evol 1992;9:678–687 [CrossRef][PubMed]
    [Google Scholar]
  19. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 2004;32:1792–1797 [CrossRef][PubMed]
    [Google Scholar]
  20. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 1985;39:783–791 [CrossRef][PubMed]
    [Google Scholar]
  21. Delamuta JR, Ribeiro RA, Ormeño-Orrillo E, Parma MM, Melo IS et al. Bradyrhizobium tropiciagri sp. nov. and Bradyrhizobium embrapense sp. nov., nitrogen-fixing symbionts of tropical forage legumes. Int J Syst Evol Microbiol 2015;65:4424–4433 [CrossRef][PubMed]
    [Google Scholar]
  22. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P et al. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 2007;57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  23. Helene LCF, Delamuta JRM, Ribeiro RA, Hungria M. Bradyrhizobium mercantei sp. nov., a nitrogen-fixing symbiont isolated from nodules of Deguelia costata (syn. Lonchocarpus costatus). Int J Syst Evol Microbiol 2017;67:1827–1834 [CrossRef][PubMed]
    [Google Scholar]
  24. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009;106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  25. Rodriguez-R LM, Konstantinidis KT. The enveomics collection: a toolbox for specialized analyses of microbial genomes and metagenomes. PeerJ Prepr 1900;2016:
    [Google Scholar]
  26. Meier-Kolthoff JP, Klenk HP, Göker M. Taxonomic use of DNA G+C content and DNA-DNA hybridization in the genomic age. Int J Syst Evol Microbiol 2014;64:352–356 [CrossRef][PubMed]
    [Google Scholar]
  27. Meier-Kolthoff JP, Auch AF, Klenk HP, Göker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 2013;14:60 [CrossRef][PubMed]
    [Google Scholar]
  28. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics 2013;29:1072–1075 [CrossRef][PubMed]
    [Google Scholar]
  29. Jarvis BDW, van Berkum P, Chen WX, Nour SM, Fernandez MP et al. Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol 1997;47:895–898 [CrossRef]
    [Google Scholar]
  30. MIDI Sherlock Microbial Identification System Operating Manual, version 4.0. Newark, DE: MIDI, Inc; 2001
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.003397
Loading
/content/journal/ijsem/10.1099/ijsem.0.003397
Loading

Data & Media loading...

Supplementary data

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error